Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Написание программ вычисления факториалов

Название: Написание программ вычисления факториалов
Раздел: Рефераты по информатике, программированию
Тип: реферат Добавлен 05:25:10 01 марта 2008 Похожие работы
Просмотров: 290 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Каждый оператор в программе Harmonic определял переход из одного множества состояний в другое.

Рассмотрим еще один пример.

Пример 10.1. Написать программу вычисления f(n)=n! , где n - натуральное, либо равно 0.

Program Factorial (input, output);

{ Программа Factorial вычисляет значение функции п!

Input: (nÎ N)Ù(n ³ 0)

Output: (Fctrl Î N)Ù(Fctrl ³ 1)Ù(Fctrl=)

}

var i, n, fctrl : integer ; { n - исходноезначение;

fctrl - результат;

i - параметр цикла

}

begin

{Ввод исходных данных}

write (¢Введите значение n = ¢) ;

readln ( n ) ;

{Проверка корректности исходных данных}

if n<0 then writeln (¢Ошибка.¢п ¢не может быть меньше 0¢)

else

begin

if n=0 then fctrl:=1

else

begin

fctrl:=1 ;

for i:=2 to n do fctrl:=fctrl * i

end {if n=0};

{Вывод результата}

writeln (¢ При n = ¢ , n , ¢_ n! = ¢ , fctrl )

end {if n<0}

end {Program}.

Рис. 10.1.

В этой программе в строке 1 мы определяем типы переменных, которые мы будем использовать при вычислениях. В строке 2 пользователю выдается приглашение ввести исходное значение п , а в строке 3, с помощью оператора readln (n) значение, заданное пользователем, полагается текущим значением переменной п . Строка 4 - это проверка корректности исходных данных. Если текущее значение n < 0 , то пользователю будет выдано сообщение об ошибке.

В соответствии с определением функции n!

в строке 5, в зависимости от текущего значения, происходит выбор способа вычисления n! . Если n=0 , то переменная fctrl принимает значение 1. Если n¹0 , то в строках 6 и 7 в цикле вычисляется произведение 1´2´3´…..´(п-1)´п . В строке 6 определяется начальное значение переменной fctrl . Обратите внимание, до этого момента значение этой пременной было не определено. Строка 7 - это оператор цикла. Переменная i - это параметр цикла, который последовательно принимает значения 2, 3, 4 и т.д. до п включительно. Для каждого значения параметра цикла выполняется тело цикла:

fctrl:= fctrl * i .

Ну и наконец, строка 8 - вывод полученного результата.

Последовательность итераций цикла в строке 7 для п = 6 показана на рисунке 10.2. Под итерацией цикла мы будем понимать выполнение тела цикла для конкретного значения параметра цикла.

Итерации Cостояние

1-я итерация

i£n ®

i

2

fctrl

1

n

6

2 2 6

2-я итерация

i£n®

3

2

6

3 6 6

3-я итерация

i£n®

4

6

6

4 24 6

4-я итерация

i£n®

5

24

6

5 120 6

5-я итерация

i£n®

6

120

6

6 720 6

Рис. 10.2.

Введение Pre и Post условий.

В зависимости от исходного значения п , мы будем иметь разное число итераций цикла и разные состояния. Итак, на основе сделанного, мы можем сделать вывод: всякий оператор в программе определяет переход из одного множества состояний в другое.

Мы уже умеем определять множество с помощью предикатов. Пусть Q и R - предикаты, определяющие множество состояний до выполнения оператора S и после выполнения оператора S соответственно.

Это записывается так:

{Q} S {R} .

Это преобразование множества Q во множество R и определяет семантику оператора S.

Определение 10.1. Предикат Q называется предусловием оператора S, а предикат R - постусловием оператора S, если

{Q} S {R} .

Например, оператор fctrl : =1 ; из строки 7 рис. 10.1, любое состояние вычислительного процесса перерабатывает в состояние, где fctrl=1, т.е.

QºT , а R ºfctrl =1.

Семантика оператора присваивания.

Наша задача определить семантику оператора присваивания в терминах множеств состояний. Это означает, что нам надо определить взаимосвязь пред и постусловий для оператора присваивания. Эту задачу мы рассмотрим применительно к простым переменным.

Определение 10.2. Обозначим wp(S,R) - предикат, определяющий множество всех состояний, для которых выполнение оператора S, обязательно заканчивается за конечное время и обязательно в состоянии, удовлетворяющем предикату R.

Пример 10.1.

Пусть S - это оператор присваивания

i : = i+1 ,

а R º i £ 1 , тогда

wp(i : = i+1 , i £ 1)=( i £ 0).

Действительно, выполнение i : = i+1 может завершиться в состоянии

i£ 1 только, если i было меньше или равно нулю. Как следует из свойства операции сложения, если i > 0 , то i+1 >1 .

Пример 10.2.

Множество состояний, определяемых предикатом wp(S,T) для некоторого оператора S, есть множество всех состояний, таких, что выполнение оператора S, начавшееся в одном из этих состояний, обязательно заканчивается.

Определение 10.3. Обозначим предикат, который получается из предиката R , если в нем заменить все свободные вхождения переменной x на выражение е .

Например, если R(x,y)=(x+y) , то

Пусть

E=x<y Ù("i : 0 £ i < n : bi < y) .

Тогда

, т.к. i не свободно в Е.

Определение 10.4. wp(x : = e , R) = если domain(e) , то ;

где domain(e) - предикат, описывающий множество состояний, для которых значение выражения е определено.

Примеры 10.3. :

wp(x : =5 , х=5) = (5=5) = Т ,

т.е. любое состояние оператор x : =5 перерабатывает в состояние, на котором предикат х=5 выполняется.

wp(x : =5 , х¹5) = (5¹5) = F ,

т.е. нет такого состояния, которое бы оператор x : =5 , перевел в состояние х¹5 .

wp(x : =x+1 , х<0) = (x+1<0) =(x<-1) .

wp(x : =x´x , х4 =10) = ((x´x)4 =10) = (x8 =10) .

Пусть с - константа, тогда

wp(x : =е , х=с) = (е=с) ,

т.е. оператор x : =е обязательно завершится и даст в результате состояние, где x имеет значение с, если, и только если, значение выражения е при выполнении этого оператора будет равно с .

Пусть с - константа, а х и y - имена двух разных переменных, тогда

wp(x : =е , у=с) = (у=с) ,

т.е. выполнение оператора x : = е не может изменить значение переменной у.

В последнем примере предполагается, что x : =е может изменить только значение переменной х. Вычисление выражения е не может изменить значения никакой переменной, т.е. нет, так называемого, побочного эффекта. Побочный эффект мы рассмотрим позднее в лекции 15.

Запрещение побочных эффектов исключительно важно, т.к. это позволяет рассматривать выражения в программе, так же, как в математике. Это означает, что выражение в программе обладает многими свойствами выражений в математике.

Идея описания семантики оператора в терминах пред- и постусловий применима не только к отдельному оператору, но и к группе операторов. Покажем, что последовательность операторов

t : =х ; x : =y ; y : = t ;

обеспечивает обмен значениями у переменных х и y .

Пусть начальное значение {x=Y , y=X}.

{x=Y Ù y=X}

t : =х ;

{x=Y Ù y=X Ù t=Y}

x : =y ;

{x=X Ù y=X Ù t=Y}

y : = t ;

{x=X Ù y=Y Ù t=Y}

или

{x=Y Ù y=X} t : =х ; x : =y ; y : = t ; {x=ХÙ y=Y}.

Что и требовалось доказать.

Условный оператор.

Условный оператор в большинстве языков программирования реализует операцию композиции “выбор”. Этот оператор позволяет выбрать ту или иную последовательность операторов в зависимости от текущего состояния вычислительного процесса.

Пример 10.4.

if x=>0 then z: =x else z: =-x.

В результате выполнения этого условного оператора, переменная z получит значение, равное абсолютной величине х .

Согласно синтаксису языка Pascal, между ключевыми словами if и then должно стоять логическое выражение. Если значение этого логического выражения Т, то выполняется оператор, стоящий после then, если - F, то оператор, стоящий после else.

Определение 10.3.

wp(if B then S1 else S2 , R) =

= domain (B)Ù(B ÚØB)Ù((B Þ wp(S1 , R))Ù(ØBÞwp(S2 , R))) ,

где domain (B) - предикат, определяющий область определения для логического выражения В.

Обычно, B - всюду определенный предикат, поэтому член domain (B) опускают, и остается

wp(if В then S1 else S2 , R)= B Þ wp(S1 , R) ÙØBÞwp(S2 , R)

Покажем, что при любых начальных условиях, выполнение оператора из примера 10.4. дает в результат в z абсолютную величину х.

wp( if x=>0 then z: =x else z: = -x , z =abs(x))=

= x ³ 0 Þ wp(z: =x , z =abs(x)) Ù x < 0 Þ wp(z: = -x , z = abs(x))=

= x ³ 0 Þ x = abs(x) Ù x < 0 Þ -x = abs(x) = TÙT = T ,

т.е., при любом предусловии этот оператор даст в качестве значения

z =abs(x).

Пример 10.5. Покажем, что при любом начальном состоянии оператор

if x=>y then z: =x else z: = y

дает z =max(x,y).

wp(if x ³ y then z: =x else z: = y , z =max(x,y))=

=((x ³ y) Þ( z: =x, z =max(x,y))) Ù ((x<y) Þ ( z: =y, z =max(x,y)))=

=(x ³ y) Þ (x=max(x,y)) Ù ((x<y) Þ (y= max(x,y))= TÙT = T.

Пример 10.6. Покажем, что

wp(if x=>y then z: =x else z: = y , z =y)= (x £ y).

wp(if x=>y then z: =x else z: = y , z =y)=

(x ³ y) Þ ( z: =x, z =y) Ù (x<y) Þ ( z: =y, z =y)=

(x ³ y) Þ (x=y) Ù (x<y) Þ (y=y)=(x £ y).

У читателя может сложиться мнение, что для доказательства того, что было сделано в этих примерах, потрачено слишком много усилий. В конце концов, это можно было получить, руководствуясь интуитивными соображениями. Однако, важно уже сейчас научиться проделывать подобные формальные преобразования. Это приведет к лучшему пониманию условного оператора. При построении и анализе некоторых программ, эта техника будет совершенно необходима. Даже выполнение небольшого числа упражнений будет способствовать изменению привычных для нас способов обдумывания программ и того, что называется интуицией программиста.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений22:34:04 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
15:57:44 24 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
09:41:14 24 ноября 2015

Работы, похожие на Реферат: Написание программ вычисления факториалов

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151363)
Комментарии (1844)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru