Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Мода. Медиана. Способы их расчета

Название: Мода. Медиана. Способы их расчета
Раздел: Рефераты по экономике
Тип: контрольная работа Добавлен 09:00:41 04 сентября 2010 Похожие работы
Просмотров: 42341 Комментариев: 3 Оценило: 5 человек Средний балл: 3.2 Оценка: неизвестно     Скачать

КОНТРОЛЬНАЯ РАБОТА

На тему: "Мода. Медиана. Способы их расчета"


Введение

Средние величины и связанные с ними показатели вариации играют в статистике очень большую роль, что обусловлено предметом ее изучения. Поэтому данная тема является одной из центральных в курсе.

Средняя является очень распространенным обобщающим показателям в статистике. Это объясняется тем, что только с помощью средней можно охарактеризовать совокупность по количественно варьирующему признаку. Средней величиной в статистике называется обобщающая характеристика совокупности однотипных явлений по какому-либо количественно варьирующему признаку. Средняя показывает уровень этого признака, отнесенный к единице совокупности.

Изучая общественные явления и стремясь выявить их характерные, типичные черты в конкретных условиях места и времени, статистики широко используют средние величины. С помощью средних можно сравнивать между собой различные совокупности по варьирующим признакам.

Средние, которые применяются в статистике, относятся к классу степенных средних. Из степенных средних наиболее часто применяется средняя арифметическая, реже – средняя гармоническая; средняя гармоническая применяется только при исчислении средних темпов динамики, а средняя квадратическая – только при исчислении показателей вариации.

Средняя арифметическая есть частное от деления суммы вариант на их число. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности образуется как сумма значений признака у отдельных ее единиц. Средняя арифметическая – наиболее распространенный вид средних, так как она соответствует природе общественных явлений, где объем варьирующих признаков в совокупности чаще всего образуется именно как сумма значений признака у отдельных единиц совокупности.

По своему определяющему свойству средняя гармоническая должна применяться тогда, когда общий объем признака образуется как сумма обратных значений вариант. Ее применяют тогда, когда в зависимости от имеющего материала веса приходиться не умножать, а делить на варианты или, что то же самое, умножать на обратное их значение. Средняя гармоническая в этих случаях – это величина обратная средней арифметической из обратных значений признака.

К средней гармонической следует прибегать в тех случаях, когда в качестве весов применяются не единицы совокупности – носители признака, а произведения этих единиц на значение признака.


1. Определение моды и медианы в статистике

Средние арифметическая и гармоническая являются обобщающими характеристиками совокупности по тому или иному варьирующему признаку. Вспомогательными описательными характеристиками распределения варьирующего признака являются мода и медиана.

Модой в статистике называется величина признака (варианта), которая чаще всего встречается в данной совокупности. В вариационном ряду это будет варианта, имеющая наибольшую частоту.

Медианной в статистике называется варианта, которая находится в середине вариационного ряда. Медиана делит ряд пополам, по обе стороны от нее (вверх и вниз) находится одинаковое количество единиц совокупности.

Мода и медиана в отличии от степенных средних являются конкретными характеристиками, их значение имеет какая-либо конкретная варианта в вариационном ряду.

Мода применяется в тех случаях, когда нужно охарактеризовать наиболее часто встречающуюся величину признака. Если надо, например, узнать наиболее распространенный размер заработной платы на предприятии, цену на рынке, по которой было продано наибольшее количество товаров, размер ботинок, пользующийся наибольшим спросом у потребителей, и т.д., в этих случаях прибегают к моде.

Медиана интересна тем, что показывает количественную границу значение варьирующего признака, которую достигла половина членов совокупности. Пусть средняя заработная плата работников банка составила 650000 руб. в месяц. Эта характеристика может быть дополнена, если мы скажем, что половина работников получила заработную плату 700000 руб. и выше, т.е. приведем медиану. Мода и медиана являются типичными характеристиками в тех случаях, когда взяты совокупности однородные и большой численности.


2. Нахождение моды и медианы в дискретном вариационном ряду

Найти моду и медиану в вариационном ряду, где значения признака заданы определенными числами, не представляет большой трудности. Рассмотрим таблицу 1. с распределение семей по числу детей.

Таблица 1. Распределение семей по числу детей

Группа семей по числу детей

Число семей

0

10

1

30

2

75

3

35

4

20

5

15

Итого

185

Очевидно, в этом примере модой будет семья, имеющая двоих детей, так как этому значению варианты соответствует наибольшее число семей. Могут быть распределения, где все варианты встречаются одинаково часто, в этом случае моды нет или, иначе, можно сказать, что все варианты одинаково модальны. В других случаях не одна, а две варианты могут быть наибольшей частоты. Тогда будет две моды, распределение будет бимодальным. Бимодальные распределения могут указывать на качественную неоднородность совокупности по исследуемому признаку.

Чтобы найти медиану в дискретном вариационном ряд, нужно сумму частот разделить пополам и к полученному результату добавить ½. Так, в распределении 185 семьи по числу детей медианой будет: 185/2 + ½ = 93, т.е. 93-я варианта, которая делит упорядоченный ряд пополам. Каково же значение 93-ей варианты? Для того чтобы это выяснить, нужно накапливать частоты, начиная, от наименьшей варианты. Сумма частот 1-й и 2-й вариант равна 40. Ясно, что здесь 93 варианты нет. Если прибавить к 40 частоту 3-й варианты, то получим сумму, равную 40 + 75 = 115. Следовательно, 93-я варианта соответствует третьему значению варьирующего признака, и медианой будет семья, имеющая двоих детей.

Мода и медиана в данном примере совпали. Если бы у нас была четная сумма частот (например, 184), то, применяя указанную выше формулу, получим номер медианной варианты, 184/2 + ½ =92,5. Поскольку варианты с дробным номером не существует, полученный результат указывает, что медиана находится посередине между 92 и 93 вариантами.

3. Расчет моды и медианы в интервальном вариационном ряду

Описательный характер моды и медианы связан с тем, что в них не погашаются индивидуальные отклонения. Они всегда соответствуют определенной варианте. Поэтому мода и медиана не требуют для своего нахождения расчетов, если известны все значения признака. Однако в интервальном вариационном ряду для нахождения приближенного значения моды и медианы в пределах определенного интервала прибегают к расчетам.

Для расчета определенного значения модальной величины признака, заключенного в интервале, применяют формулу:

Мо = ХМо + iМо *(fМо – fМо-1 )/((fМо – fМо-1 ) + (fМо – fМо+1 )),

Где ХМо – минимальная граница модального интервала;

iМо – величина модального интервала;

fМо – частота модального интервала;

fМо-1 – частота интервала, предшествующего модальному;

fМо+1 – частота интервала, следующего за модальным.

Покажем расчет моды на примере, приведенном в таблице 2.


Таблица 2. Распределение рабочих предприятия по выполнению норм выработки

Выполнение норм выработки, %

Численность рабочих

90 – 95

6

95 – 100

12

100 -105

104

105 – 110

98

110 -115

40

115 и более

20

Итого

280

Чтобы найти моду, первоначально определим модальный интервал данного ряда. Из примера видно, что наибольшая частота соответствует интервалу, где варианта лежит в пределах от 100 до 105. Это и есть модальный интервал. Величина модального интервала равна 5.

Подставляя числовые значения из таблицы 2. в указанную выше формулу, получим:

Мо = 100 + 5 * (104 -12)/((104 – 12) + (104 – 98)) = 108,8

Смысл этой формулы заключается в следующем: величину той части модального интервала, которую нужно добавить к его минимальной границе, определяют в зависимости от величины частот предшествующего и последующего интервалов. В данном случае к 100 прибавляем 8,8, т.е. больше половины интервала, потому что частота предшествующего интервала меньше частоты последующего интервала.

Исчислим теперь медиану. Для нахождения медианы в интервальном вариационном ряду определяем сначала интервал, в котором она находится (медианный интервал). Таким интервалом будет такой, комулятивная частота которого равна или превышает половину суммы частот. Комулятивные частоты образуются путем постепенного суммирования частот, начиная от интервала с наименьшим значением признака. Половина суммы частот у нас равна 250 (500:2). Следовательно, согласно таблицы 3. медианным интервалом будет интервал со значением заработной платы от 350000 руб. до 400000 руб.

Таблица 3. Расчет медианы в интервальном вариационном ряду

Заработная плата, тыс. руб.

Частоты

Комулятивные частоты

200 – 250

10

10

250 – 300

50

60

300 – 350

100

160

350 – 400

115

275

400 – 450

180

455

450 – 500

45

500

Сумма

500

-

До этого интервала сумма накопленных частот составила 160. Следовательно, чтобы получить значение медианы, необходимо прибавить еще 90 единиц (250 – 160).

При определении значения медианы предполагают, что значение единиц в границах интервала распределяется равномерно. Следовательно, если 115 единиц, находящихся в этом интервале, распределяются равномерно в интервале, равном 50, то 90 единицам будет соответствовать следующая его величина:

50 * 90/115 = 39,1

Прибавив полученную величину к минимальной границе медианного интервала, получим искомое значение медианы:

Ме = 350 +39,1 = 389,1 тыс. руб.

Формула исчисления медианы для интервального вариационного ряда имеет следующий вид:

Ме = ХМе + iМе * (∑f/2 – SМе-1 )/fМе,

Где ХМе – начальное значение медианного интервала;

iМе – величина медианного интервала;

∑f – сумма частот ряда (численность ряда);

SМе-1 – сумма накопленных частот в интервалах, предшествующих медианному;

fМе – частота медианного интервала.

Подставляя в эту формулу значения из примера, приведенного выше, получим значение медианы:

Ме = 350 + 50 * (500/2 – 160)/115 = 389,1 тыс. руб.

Следовательно, в наших примерах мода равна 108,8, а медиана – 389,1.

4. Квартили и децили – дополнительные характеристики вариационного ряда

Дополнительно к медиане для характеристики вариационного ряда исчисляют квартили, которые делят ряд по сумме частот на четыре равные части, и децили, которые делят ряд на десять равных частей. Второй квартиль равен медиане, а первый – Q1 и третий – Q3 исчисляют аналогично расчету медианы, только вместо медианного интервала берется для первого квартиля интервал, в котором находится варианта, отсекающая ¼ численности частот, а для третьего квартиля – варианта, отсекающая ¾ численности частот. Исчислим для нашего примера первый и третий квартили:

Q1 = XQ 1 +iQ 1 * (∑f/4 – SQ 1-1 )/fQ 1 ,

Q1 = 300 + 50 * (125–60)/100 = 332,5

Для расчета первого квартиля находим ¼ всех частот: ∑f/4 составит 125 (500/4). Из таблицы 3 видно, что 125-я варианта находится в интервале 300 – 350.

Следовательно, XQ 1 = 300. Сумма накопленных частот до этого интервала равна 60 (SQ 1-1 ), частота этого интервала – 100. Расчет дает значение первого квартиля 332,5 тыс. руб. Это означает, что у трех четвертей всех рабочих заработная плата составляет 332,5 тыс. руб. и выше.

Рассчитаем третий квартиль. Три четверти численности частот (3/4 ∑f) составит 375 = 500*3/ 4. 375-я варианта находится в интервале 400 – 450. Следовательно:

Q3 = XQ 3 + iQ 3 * (3/4∑f – SQ 3-1 )/fQ 3 ,

Q3 = 400 + 50 *(375 – 275)/180 = 427,75

Третий квартиль составляет 427,75 тыс. руб. Следовательно, заработная плата каждого четвертого работника превышает 427,75 тыс. руб.


Заключение

Исходя из контрольной работы, можно сделать вывод, что средние величины и их разновидности в статистике играют большую роль. Средние показатели широко применяются в анализе, так как именно в них находят свое проявление закономерности массовых явлений и процессов как во времени, так и в пространстве. Так, например, закономерность повышения производительности труда находит свое выражение в статистических показателях роста средней выработки на одного работающего в промышленности, закономерность неуклонного роста уровня благосостояния населения проявляется в статистических показателях увеличения средних доходов рабочих и служащих и т.д.

Широкое применение имеют такие описательные характеристики распределения варьирующего признака как мода и медиана. Они являются конкретными характеристиками, их значение имеет какая-либо конкретная варианта в вариационном ряду.

Так, чтобы охарактеризовать наиболее часто встречающуюся величину признака, применяют моду, а чтоб показать количественную границу значения варьирующего признака, которую достигла половина членов совокупности – медиану.

Таким образом, средние величины помогают изучать закономерности развития промышленности, конкретной отрасли, общества и страны в целом.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:17:01 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
17:19:40 25 ноября 2015

Смотреть все комментарии (3)
Работы, похожие на Контрольная работа: Мода. Медиана. Способы их расчета
Статистика
Университет экономики и управления Горячих М.В. СТАТИСТИКА Учебно-методическое пособие для самостоятельного изучения дисциплины г. Симферополь 2003 ...
Медиана (МЕ) - величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения варьирующего признака меньшие, чем средний ...
Для интервального ряда медианное значение, делящее всю совокупность на две равные части находится в интервале, чья кумулятивная частота (сумма накопленных частот) равна или ...
Раздел: Рефераты по экономике
Тип: учебное пособие Просмотров: 8252 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Статистика
Казань 2000 год Оглавление Введение 4 1. Источники статистической информации 7 2. Сводка и группировка материалов статистического наблюдения. 15 3 ...
В дискретных вариационных рядах мода определяется по наибольшей частоте.
Интервал 100-300 в данном распределении будет модальным, т.к. он имеет наибольшую частоту (f=35,5). Тогда по вышеуказанной формуле мода будет равна:
Раздел: Рефераты по статистике
Тип: реферат Просмотров: 6561 Комментариев: 4 Похожие работы
Оценило: 4 человек Средний балл: 3 Оценка: неизвестно     Скачать
Теория статистики
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛЖСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Н.ТАТИЩЕВА КАФЕДРА "БУХГАЛТЕРСКИЙ УЧЕТ, АНАЛИЗ И ...
Структурные средние - мода и медиана - в отличие от степенных средних, которые в значительной степени являются абстрактной характеристикой совокупности, выступают как конкретные ...
Для интервального вариационного ряда порядок расчета структурных средних следующий: сначала находят интервал, содержащий моду или медиану, а затем рассчитывают соответствующие ...
Раздел: Рефераты по экономике
Тип: учебное пособие Просмотров: 9781 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Основные понятия статистики
ТЕМА 1.4. Законы распределения случайных величин, наиболее часто используемые в экономических приложениях, и их числовые характеристики 1. Основные ...
В интервальном вариационном ряду для определения медианы сначала нужно найти медианный интервал - первый по счету интервал, в котором накопленная частота равна или превышает ...
Медианным является интервал (1500-1600), так как это первый по счету интервал, сумма накопленных частот которого (115) больше полусуммы накопленных частот интервального ряда (0.5 ...
Раздел: Рефераты по экономике
Тип: учебное пособие Просмотров: 15630 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Анализ и обобщение статистических данных экономики Республики Калмыкия
СОДЕРЖАНИЕ СОДЕРЖАНИЕ 1. ИСХОДНЫЕ ДАННЫЕ 2. КРАТКАЯ ХАРАКТЕРИСТИКА РЕСПУБЛИКИ КАЛМЫКИЯ 3. ПОСТРОЕНИЕ РЯДОВ РАСПРЕДЕЛЕНИЯ 3.1 ПОСТРОЕНИЕ С ПОМОЩЬЮ ...
В интервальном вариационном ряду с равными интервалами модальный интервал определяется по наибольшей частоте.
При вычислении медианы интервального вариационного ряда сначала находят медианный интервал , где h - длина медианного интервала.
Раздел: Рефераты по экономике
Тип: курсовая работа Просмотров: 1329 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Статистика
Предмет и метод статистической науки. Предмет статистики. Актуальность и место этой науки в современных условиях. Основные категории статистики. Метод ...
Предмет статистики.
, где - нижняя граница модального интервала, i - величина этого интервала, , , - частоты модального, предшествующего ему и следующего за ним интервалов.
где - нижняя граница интервала, содержащего медиану (интервал определяется по накопленной частоте, первой превышающей 50% суммы частот (в дальнейшем для квартилей, децилей - 25 ...
Раздел: Рефераты по статистике
Тип: реферат Просмотров: 7672 Комментариев: 3 Похожие работы
Оценило: 3 человек Средний балл: 3 Оценка: неизвестно     Скачать
Статистические наблюдения
ТЕМА 1. ПРЕДМЕТ, МЕТОД И ЗАДАЧИ СТАТИСТИКИ Gegenstand, Methoden und Aufgaben der Statistik Subject matter, methods and tasks of statistics 1.1 ...
Допущение: в случае открытых интервалов расчет, строго говоря, не возможен, но чаще всего берут величины предыдущих (последующих) интервалов либо используют в качестве средней ...
fМ0 - частота модального интервала;
Раздел: Рефераты по экономике
Тип: учебное пособие Просмотров: 9882 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Лекции по предмету статистика
Содержание Тема № 1. Предмет и метод статистики 4 История, пути и направления статистической науки 4 Предмет статистики 4 Отрасли статистики 5 Метод ...
частота (вес) интервала, предшествующего модальному,
Накопленной частоте, которая равна порядковому номеру медианы или первая его превышает, в дискретном вариационном ряду соответствует значение медианы, а в интервальном - медианный ...
Раздел: Рефераты по статистике
Тип: реферат Просмотров: 3752 Комментариев: 3 Похожие работы
Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать

Все работы, похожие на Контрольная работа: Мода. Медиана. Способы их расчета (1735)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150053)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru