Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364141
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8693)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: по истории и философии науки История изучения динамики популяций

Название: по истории и философии науки История изучения динамики популяций
Раздел: Остальные рефераты
Тип: реферат Добавлен 23:56:41 25 августа 2011 Похожие работы
Просмотров: 166 Комментариев: 1 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Московский Педагогический Государственный Университет

Биолого-химический факультет

Реферат по истории и философии науки

История изучения динамики популяций

Выполнил: студент 6 курса магистратуры

Фомин А. В.

Проверила: д. б. н. профессор

Кузнецова Н. А.

Москва 2011

Содержание

На разных уровнях развития живой материи продукционные процессы проявляют себя по-разному, но их феноменологическое описание всегда включает рождение, рост, взаимодействие с внешней средой, в том числе с другими особями своего вида или других видов, смерть особей. Именно это обстоятельство позволяет применять сходный математический аппарат для описания моделей роста и развития у таких, казалось бы, удаленных друг от друга по лестнице уровней организации живой материи, как клеточная популяция и сообщество видов в экосистеме.

Описание изменения численности популяции во времени составляет предмет популяционной динамики. Популяционная динамика является частью биологии математической, наиболее продвинутой в смысле формального математического аппарата, своего рода "математическим полигоном" для проверки теоретических идей и представлений о законах роста и эволюции биологических видов, популяций, сообществ. Возможность описания популяций различной биологической природы одинаковыми математическими соотношениями обусловлена тем, что с динамической точки зрения, рост и отбор организмов в процессе эволюции происходит по принципу "Кинетического совершенства" (Шноль, 1979)

Преимущества математического анализа любых, в том числе популяционных, процессов, очевидны. Математическое моделирование не только помогает строго формализовать знания об объекте, но иногда (при хорошей изученности объекта) дать количественное описание процесса, предсказать его ход и эффективность, дать рекомендации по оптимизации управления этим процессом. Это особенно важно для биологических процессов, имеющих прикладное и промышленное значение - биотехнологических систем, агробиоценозов, эксплуатируемых природных экосистем, продуктивность которых определяется закономерностями роста популяций живых организмов, представляющих собой "продукт" этих биологических систем.

Ряд Фибоначчи

Постановка математических задач в терминах популяционной динамики восходит к глубокой древности. Человеку свойственно рассуждать о предметах, жизненно ему близких, и что может быть ближе, чем законы размножения популяций - людей, животных , растений.

Первая дошедшая до нас математическая модель динамики популяций приводится в книге "Трактат о счете" "Liber abaci", датированной 1202 годом, написанной крупнейшим итальянским ученым Леонардо Фибоначчи - Леонардо из Пизы, (предположительно 1170-1240). В этой книге, представляющей собой собрание арифметических и алгебраических сведений того времени и впоследствии распространившейся в списках по всей Европе, рассматривается следующая задача. "Некто выращивает кроликов в пространстве, со всех сторон обнесенном высокой стеной. Сколько пар кроликов рождается в один год от одной пары, если через месяц пара кроликов производит на свет другую пару, а рожают кролики, начиная со второго месяца после своего рождения.". Решением задачи является ряд чисел:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ... (1)

(Сам Леонардо опустил первый член ряда). Два первых числа соответствуют первому и второму месяцу размножения. 12 последующих - месячному приросту поголовья кроликов. Каждый последующий ряд равен сумме двух предыдущих. Ряд (1) вошел в историю как ряд Фибоначчи, а его члены - чисел Фибоначчи. Это первая известная в Европе рекурсивная последовательность чисел (в которой соотношение между двумя или более членами ряда может быть выражена в виде формулы). Рекуррентная формула для членов ряда Фибоначчи была записана французским математиком Альбертом Гирером в 1634 г.

Здесь U представляет собой член последовательности, а нижний индекс - его номер в ряду чисел. В 1753 г. математик из Глазго Роберт Симпсон заметил, что при увеличении порядкового номера членов ряда отношение последующего члена к предыдущему приближается к числу a, называемому "Золотым сечением", равному 1,6180..., или . В 19 веке о свойствах ряда Фибоначчи и его связи с Золотым сечением много писал французский математик Эдуард Лукас. С тех пор естествоиспытатели наблюдают его закономерности в расположения чешуек на шишках, лепестков в цветке подсолнуха, в спиральных образованиях ракушек моллюсков и других творениях природы. Ряд Фибоначчи и его свойства также используются в вычислительной математике при создании специальных алгоритмов счета.

Уравнение экспоненциального роста.

Второй всемирно известной математической моделью, в основу которой положена задача о динамике численности популяции, является классическая модель неограниченного роста – геометрическая прогрессия в дискретном представлении,

или экспонента, - в непрерывном

(2)

Модель предложена Мальтусом в 1798 г. в его классическом труде "О росте народонаселения". Томас Роберт Мальтус (1766-1834) известный английский демограф и экономист, обратил внимание на тот факт, что численность популяции растет по экспоненте (в геометрической прогрессии), в то время как производство продуктов питания растет со временем линейно (в арифметической прогрессии), из чего сделал справедливый вывод, что рано или поздно экспонента обязательно "обгонит" линейную функцию, и наступит голод. На основании этих выводов Мальтус говорит о необходимости ввести ограничения на рождаемость, в особенности для беднейших слоев общества. "Экономический пессимизм", следующий из прогнозов предложенной им модели, в основу которой положен анализ эмпирических данных, Мальтус противопоставлял модным в начале 19 века оптимистическим идеям гуманистов: Жана Жака Руссо, Уильяма Годвина и других, предсказывающих человечеству грядущее счастье и процветание. Можно говорить о том, что Мальтус был первым ученым "алармистом", который на основании результатов моделирования "бил тревогу" и предупреждал человечество об опасности следования развитию по используемым ранее сценариям прогресса. Во второй половине 20 века такую "алармистскую" роль сыграли работы Римского клуба, и в первую очередь "модель глобального роста" Дж. Форрестера. (см. Экология математическая).

Обсуждению важности вывода Мальтуса для популяционной динамики Дарвин посвятил несколько страниц своего дневника, указывая, что поскольку ни одна популяция не размножается до бесконечности, должны существовать факторы, препятствующие такому неограниченному размножению. Среди этих факторов может быть нехватка ресурса (продовольствия), вызывающая конкуренцию внутри популяции за ресурс, хищничество, конкуренция c другими видами. Результатом является замедление скорости роста популяции и выход ее численности на стационарный уровень.

Ограниченный рост

Впервые системный фактор, ограничивающий рост популяции, описал Ферхюльст в уравнении логистического роста (1848):

(3)

Это уравнение обладает двумя важными свойствами. При малых х численность х возрастает экспоненциально (как в уравнении 2) при больших - приближается к определенному пределу К. Эта величина, называемая емкостью популяции, определяется ограниченностью пищевых ресурсов, мест для гнездования, многими другими факторами, которые могут быть различными для разных видов. Таким образом емкость экологической ниши представляет собой системный фактор, который определяет ограниченность роста популяции в данном ареале обитания.

Уравнение (3) можно также переписать в виде:

(4)

Здесь - коэффициент внутривидовой конкуренции (за пищевой ресурс, убежища и т.п. Уравнение (3) можно решить аналитически. Решение имеет вид:

(5)

Формула (5) описывает кинетическую кривую, то есть зависимость численности популяции от времени. Примеры экспериментально наблюдаемой динамики популяций, развивающихся по логистическому закону, приведены на рис. 1а,б.

Рис.1. Ограниченный рост. а. Динамика численности жука Rhizopertha dominica в 10-граммовой порции пшеничных зерен, пополняемых каждую неделю. Точки- экспериментальные данные, сплошная линия - логистическая кривая. б. Динамика численности водоросли Chlorella в культуре. Рисунки из [3].

На рис. 1а сплошной линией представлен график функции (5).Если выражение (5) продифференциировать два раза по t, увидим, что кривая x(t) имеет точку перегиба, с координатами:

Ордината представляет собой половину максимальной численности, а абсцисса зависит как от емкости популяции K, так и от константы собственной скорости роста r - чем выше генетические возможности популяции, тем скорее наступает перегиб на кривой численности.

Логистическая модель Ферхюльста (3) оказалось не менее замечательной, чем ряд Фибоначчи. Исследование этого уравнения в случае дискретного изменения численности в популяциях с неперекрывающимися поколениями показало целый спектр возможных типов решений, в том числе колебательные изменения разного периода и вспышки численности. Рассмотрение модификации логистического уравнения с комплексными членами привело к новому классу объектов - множествам Мандельброта и Жолиа, имеющим фрактальную структуру Бенуа Мандельброт - создатель современной теории фракталов, родился в 1924 г. в Варшаве, в 1958 г. работал в США, с 1984 г. - профессор Гарвардского университета в Англии. Полученные им впервые компьютерные изображения множества

пробрели всемирную известность и были многократно воспроизведены в разных модификациях на компьютерах. Красота фрактальных изображений завораживает. (См. "Красота фракталов", М., 1995 - перевод с англ. книги: H.-O.Peitgen, P.H.Richer " The Beauty of Fractals",Springer, 1986).

К дискретному логистическому уравнению мы обратимся позднее, а сейчас вспомним тот биологический факт, что в природе популяции имеют не только максимальную численность, определяемую величиной экологической ниши K, но и минимальную критическую численность L. При падении численности популяции ниже этой критической величины из-за неблагоприятных условий, или в результате хищнического промысла, восстановление популяции становится невозможным.

Величина нижней критической плотности различна для разных видов. Исследования биологов показали, что она может составлять всего лишь пару особей на тысячу квадратных километров в случае ондатры, и сотни тысяч особей для американского странствующего голубя. Заранее трудно было предположить, что столь многочисленный вид уже перешел через критическую границу своей численности и обречен на вымирание. Например, для голубых китов критическая граница численности оказалась равной десяткам - сотням. Хищническое истребление этих гигантских животных привело к тому, что их осталось слишком мало в Мировом океане. И хотя охота на них давно запрещена, надежд на восстановление популяции голубых китов практически нет. Кривые показателей численности для трех видов китов приведены на рис. 2.

Рис.2. Динамика численности трех видов китов в мировом океане. По оси ординат отложен индекс численности - число убитых китов на 1 тыс. судо-тонно-суток. (Gulland, 1971)

Модели, описывающие как внутривидовую конкуренцию, определяющую верхнюю границу численности популяции, так и нижнюю критическую численность популяции, имеют два устойчивых стационарных решения. Одно из них - нулевое для начальных численностей, которые ниже наименьшей критической численности популяции. Другое равно K - емкости экологической ниши в случае, когда начальная численность выше наименьшей критической величины. Такими "триггерными" свойствами обладает нелинейное уравнение, предложенное А.Д.Базыкиным [1]

(6)

В формуле (6) первый член в правой части описывает размножение двуполой популяции, скорость которого пропорциональна квадрату численности (вероятности встреч особей разного пола) для малых плотностей, и пропорциональна числу самок в популяции - для больших плотностей популяции. Второй член описывает смертность, пропорциональную численности, а третий - внутривидовую конкуренцию, подобно тому, как это было в логистическом уравнении (4).

Зависимости численности от времени и скорости прироста от численности представлены на рис. 3 (а,б). Кривые 1,-5 соответствуют различным начальным численностям. x=0 и x=K -устойчивые стационарные состояния, x=L -неустойчивое, разделяющее области влияния устойчивых состояний равновесия. Величины L и K различны для разных популяций и могут быть определены из наблюдений и экспериментов.

Из рисунка 3а видно, что скорость восстановления популяции после ее падения в силу промысла или неблагоприятных условий зависит от того, насколько близка новая начальная численность к опасной границе L. Если ущерб, нанесенный популяции невелик (меньше половины емкости экологической ниши) популяция быстро восстанавливается по кривой 1, не имеющей точки перегиба. В случае, когда численность оставшейся популяции близка к критической, восстановление происходит сначала очень медленно, популяция надолго "застревает" вблизи опасной границы", а затем уже, "набрав силы", более быстро выходит на устойчивый стационарный уровень K (кривая 3). Кривая 2 представляет промежуточный случай. Кривые 4, 5 иллюстрирует вырождение популяции в случае, когда начальная численность опустилась ниже критической границы. обращает на себя внимание сходства начальных участков кривых 3 и 5. Близость к опасной границе со стороны больших значений (3) и меньших (5) выражается в долгом пребывании системы в неопределенном состоянии, когда малые флуктуации могут легко "перебросить" систему через опасную границу в "благополучную" область возврата к стационарному значению K, или, наоборот, в область вымирания. В это время сторонний наблюдатель не сможет определить по форме кривой динамики численности, какая судьба ожидает систему. Для самих участников жизненной драмы - нахождения системы вблизи опасной границы - исход не очевиден. Важно понимать, что в этой ситуации чрезвычайно важны любые, даже очень малые усилия, направленные на преодоление критического барьера.

Именно популяции, численность которых близка к нижней критической численности, занесены в Красную книгу. Удастся ли перенести каждый конкретный вид на "Зеленые страницы", куда переносят виды, исчезновение которых удалось предотвратить, зависит от многих обстоятельств, в частности как от репродуктивных усилий вида, так и от усилий людей, спасающих эти виды.

Влияние запаздывания.

Уравнения, которые мы рассматривали до сих пор, предполагают, что процессы размножения и гибели происходят одновременно и популяция мгновенно реагирует на любое изменение внешних условий. Однако в реальности это не так. Всегда имеется некоторое запаздывание, которое вызвано несколькими причинами.

Развитие любой взрослой особи из оплодотворенного яйца требует определенного времени T. Поэтому если какое-нибудь изменение в окружающей среде, например, увеличение ресурса, вызовет внезапное повышение продуктивности взрослых особей, то соответствующе изменение численности произойдет лишь по прошествии времени T. Это означает, что уравнение

dx/dt=f(x), (7)

где x - численность взрослых особей, следует заменить уравнением:

dx/dt=f(xt--T) (8)

где xt--T - численность половозрелых особей в момент t-T.

В реальных популяциях интенсивность размножения и гибели различны в разных возрастных группах. Например, у насекомых откладывают яйца взрослые особи, а конкуренция наиболее выражена на личиночной стадии. Такие процессы, как отравление среды продуктами метаболизма, каннибализм и т.п. в наиболее сильной степени воздействуют на ранние возрастные стадии, а их интенсивность зависит от численности взрослых особей, т.е. отрицательное влияние на коэффициент естественного прироста оказывают особи предыдущего поколения. С учетом этих обстоятельств, логистическое уравнение (4) перепишется в виде:

dx/dt=x(r-xt-T) (9)

Наиболее распространенное и изученное в динамике популяций уравнение Хатчинсона учитывает тот факт, что особи размножаются лишь с определенного возраста, и имеет вид:

(10)

Смысл модели (10) заключается в том, что уровень лимитирования системы зависит не только от общей численности популяции в данный момент времени t, определяемой емкостью среды, но и от количества половозрелых особей в момент времени t-T. Еще более точное уравнение, учитывающее распределение времени запаздывания:

Вид функции распределения времен запаздывания w(t-s) представлен на рис. 4. Такого типа уравнения могут иметь колебательные решения. Это легко проверить для простого линейного уравнения:

которое имеет периодическое решение в широком диапазоне значений скоростей роста r и времени запаздывания T.

В технике хорошо известно, что запаздывание в регуляции системы может привести к возникновению колебаний переменных. Если система регулируется петлей обратной связи, в которой происходит существенная задержка, то весьма вероятно возникновение колебаний. Если продолжительность задержки в петле обратной связи больше собственного времени системы, могут возникнуть колебания с нарастающей амплитудой, нарушаются их период и фаза.

Рис.4. Модель динамики популяции с учетом распределения времен запаздывания. Типичный вид весовой функции w(t)

Дискретные модели популяций с неперекрывающимися поколениями

Даже в таких популяциях, где особи размножаются несколько лет подряд (млекопитающие и птицы, многолетние растения), наличие сезонов размножения вносит некоторое запаздывание в процессы регуляции численности. Если же взрослые особи, размножающиеся в данном году, редко или никогда не доживают до того, чтобы размножиться в будущем году, как, например, у однолетних растений, мелких грызунов, многих насекомых, это оказывает существенное влияние на динамику их численности. В этом случае уравнение (7) следует заменить уравнением

Nn+1=N(xn), (11)

где Nn - численность популяции в году n.

Наблюдения над динамикой численности показывают, что в таких системах при малых численностях N растет от одной генерации к другой, а при высоких - падает. Это свойство - резко расти при малых N и падать при больших, проявляется в экономике как закон "бумов и спадов". В таких случаях функция F - одноэкстремальная, вид ее изображен на рис. 5а.

Функция такого типа может быть описана с помощью различных формул. Ниболее широко распространена версия дискретного логистического уравнения, предложенная Мораном для численности насекомых (1950) и Рикером для рыбных популяций (1954):

(12)

Здесь, как и в логистическом уравнении (3), r-константа собственной скорости роста, K - емкость экологической ниши популяции. Ход решения уравнения (12) можно наглядно продемонстрировать графически с помощью диаграммы и лестницы Ламерея. Точка пересечения биссектрисы первого координатного угла Nt+1=Nt и функции F(Nt) определяет равновесное состояние системы, аналогичное стационарному состоянию дифференциального уравнения. На рис. 5б показан способ нахождения значений Nt в последовательные моменты времени. Пусть в начальный момент времени N=N0. F(N0)=N1 задает значение численности в последующий момент времени t=1. Величина N1 в свою очередь определяет значение F(N1)=N2. И так далее. На рис. 5б изображен случай, когда траектория сходится к равновесному состоянию, совершая затухающие колебания.

Рис.5. Модели популяций с неперекрывающимися поколениями. а. Вид одноэкстремальной функции зависимости численности популяции в данный момент времени от численности в предыдущий момент времени. Nt+1=F(Nt); б. Определение значений численности популяции в последовательные моменты времени (см. текст) для дискретного аналога логистического уравнения (12).

В зависимости от крутизны графика функции F(N1) (кривые a,b,c,d на рис. 6) в системе могут возникать самые разнообразные режимы. С ростом r поведение усложняется. Монотонное стремление к равновесию (Рис.6а) сменяется колебательным (Рис.6б). При дальнейшем увеличении r (увеличении крутизны кривой F(N1)) возникают циклы - аналоги предельных циклов для систем дифференциальных уравнений (рис. 6 в,г). Если r еще больше растет - наблюдается квазистохастическое поведение - хаос. (рис. 6 д,е). Модели такого типа являются простейшими детерминированными объектами, демонстрирующими квазистохастическое поведение.

Квазистохастическим поведением могут обладать и переменные в непрерывных нелинейных автономных системах трех и более дифференциальных уравнений. Изображение детерминированного хаоса в популяции из трех видов: хишник - две жертвы представлено на рис.12. Таким образом, стохастичность может быть свойством, присущим самим детерминированным природным системам (Детерминированный хаос), и не зависит от того, какой математический аппарат, непрерывный или дискретны, используется.

Рис.6. Типы динамики численности в модели популяции с неперекрывающимися поколениями при разных значениях собственной скорости роста. а.- Монотонный рост; б.- Затухающие колебания; в.- двухточечный цикл; г.- четырехточечный цикл; д, е- квазистохастическое поведение.

Матричные модели популяций

Ч = П + Р – см – онк.

Доля = онк /Ч

Модели взаимодействия двух популяций

Любые популяции существуют во взаимодействии с окружением. Взаимодействовать могут как биологические виды в собственном смысле этого слова, так и разновидности одного вида, например, различные мутанты одного и того же вида микроорганизмов при их культивировании. Взаимодействия принято разделять на трофические (когда один из видов питается другим видом) и топические (взаимодействия между видами одного трофического уровня). Более подробно типы взаимодействий рассмотрены в статье "Экология математическая". В популяционной динамике принято классифицировать взаимодействия по их результатам. Наиболее распространенными и хорошо изученными являются взаимодействия конкуренции (когда численность каждого из видов в присутствии другого растет с меньшей скоростью), симбиоза (когда виды способствуют росту друг друга) и типа хищник-жертва или паразит-хозяин (когда численность вида-жертвы в присутствии вида-хищника растет медленнее, а вида-хищника - быстрее). В природе также встречаются взаимодействия , когда один из видов чувствует присутствие второго, а другой - нет (аменсализм и комменсализм), или виды нейтральны.

Первое глубокое математическое исследование закономерностей динамики взаимодействующих популяций дано в книге В Вольтерра "Математическая теория борьбы за существование" (1931)) Крупнейший итальянский математик Вито Вольтерра - основатель математической биологии (см. Биология математическая) предложил описывать взаимодействие видов подобно тому, как это делается в статистической физике и химической кинетике, в виде мультипликативных членов в уравнениях (произведений численностей взаимодействующих видов). Тогда в общем виде с учетом самоограничения численности по логистическому закону система дифференциальных уравнений, описывающая взаимодействие двух видов, может быть записана в форме:

(19)

Здесь параметры ai - константы собственной скорости роста видов, ci - константы самоограничения численности (внутривидовой конкуренции), bij - константы взаимодействия видов, (i,j=1,2). Соответствие знаков этих последних коэффициентов различным типам взаимодействий приведено в таблице.

ТИПЫ ВЗАИМОДЕЙСТВИЯ ВИДОВ

СИМБИОЗ + + b12,b21>0

КОММЕНСАЛИЗМ + 0 b12,>0, b21=0

ХИЩНИК-ЖЕРТВА + - b12,>0, b21<0

АМЕНСАЛИЗМ 0 - b12,=0, b21<0

КОНКУРЕНЦИЯ - - b12, b21<0

НЕЙТРАЛИЗМ 0 0 b12, b21=0

Исследование свойств моделей типа (7.1) приводит к некоторым важным выводам относительно исхода взаимодействия видов.

Уравнения конкуренции (b12,>0, b21<0) предсказывают выживание одного из двух видов, в случае если собственная скорость роста другого вида меньше некоторой критической величины. Оба вида могут сосуществовать, если произведение коэффициентов межпопуляционного взаимодействия меньше произведения коэффициентов внутри популяционного взаимодействия: b12b21<c1c2..

Для изучения конкуренции видов ставились эксперименты на самых различных организмах. Обычно выбирают два близкородственных вида и выращивают их вместе и по отдельности в строго контролируемых условиях. Через определенные промежутки времени проводят полный или выборочный учет численности популяции. Регистрируют данные по нескольким повторным экспериментам и анализируют. Исследования проводили на простейших (в частности, инфузориях), многих видах жуков рода Tribolium, дрозофиллах, пресноводных ракообразных (дафниях). Много экспериментов проводилось на микробных популяциях. В природе также проводили эксперименты, в том числе на планариях (Рейнольдс) двух видах муравьев (Понтин). Результаты свидетельствуют о существовании конкуренции, ведущей к уменьшению численности обоих видов.

Модель конкуренции типа (19) имеет недостатки, в частности, из нее следует, что сосуществование двух видов возможно лишь в случае, если их численность ограничивается разными факторами, но модель не дает указаний, насколько велики должны быть различия для обеспечения длительного сосуществования. Внесение стохастических элементов (например, введение функции использования ресурса) позволяет ответить на эти вопросы.

Для взаимоотношений типа хищник-жертва или паразит-хозяин система уравнений (19) принимает вид:

(20)

ри различных соотношениях параметров в системе возможно выживание только жертвы, только хищника (если у него имеются и другие источники питания) и сосуществование обоих видов. В этом случае численности видов совершают колебания, причем колебания численности хищника в модели запаздывают по отношению к колебаниям численности жертвы. (рис.8)

На вопрос о том, отражает ли модель (20) природные закономерности ответить не так просто. В реальности колебания численностей хищника и жертвы наблюдались как в природных, так и в экспериментальных ситуациях (рис. 9).

Однако, существует много важных аспектов экологии хищника и жертвы, которые в модели не учтены. Даже если в популяции наблюдаются регулярные колебания численности, это вовсе не обязательно служит подтверждением модели Вольтерра, логистической модели с запаздыванием (10) или любой другой простой модели. Колебательное изменение численности популяции в природе может отражать ее взаимодействие с пищевыми объектами или с хищниками. Численность хищников может повторять эти циклы даже в том случае, если само взаимодействие их не вызывает. При описании любой конкретной ситуации требуется построение гораздо более подробной модели, чаще всего имитационной (см. Биология математическая), и необходима большая работа по идентификации параметров такой модели, лишь тогда можно надеяться на правдоподобное моделирование природной ситуации.

Обобщенные модели взаимодействия двух видов.

С середины 20 века в связи с развитием интереса к экологии и с быстрым усовершенствованием компьютеров, позволившим численно решать и исследовать системы нелинейных уравнений, стало развиваться направление популяционной динамики, посвященное выработке общих критериев с целью установить, какого вида модели могут описать те или иные особенности поведения численности взаимодействующих популяций, в частности, устойчивые колебания.

Эти работы развивались по двум направлениям. Представители первого направления, описывая входящие в модельные системы функции, задают лишь качественные особенности этих функций, такие как положительность, монотонность отношения типа большеменьше (Колмогоров, 1972, Rosenzweig, 1969). Рассматриваемые здесь модели могут быть изучены аналитически.

В рамках второго направления последовательно рассматривались различные модификации системы Вольтерра, получаемые включением в исходную систему различных дополнительных факторов и закономерностей, описываемых явными функциями (Холлинз, 1965, Иевлев,1955, Полуэктов, 1980, Базыкин, 1985, Медвинский, 1995). Использование компьютерной техники позволило применить полученные здесь результаты к конкретным популяциям, в частности, к задачам оптимального промысла.

Примером работ первого направления служит работа А.Н.Колмогорова (1935, переработана в 1972), который рассмотрел обобщенную модель взаимодействия биологических видов типа хищникжертва или паразит-хозяин. Модель представляет собой систему двух уравнений общего вида

В модель заложены следующие предположения:

1) Хищники не взаимодействуют друг с другом, т.е. коэффициент размножения хищников k2 и число жертв L, истребляемых в единицу времени одним хищником, не зависит от y. 2) Прирост числа жертв при наличии хищников равен приросту в отсутствие хищников минус число жертв, истребляемых хищниками. Функции k1(x), k2(x), L(x), - непрерывны и определены на положительной полуоси x,y 0. 3) dk1/dx<0. Это означает, что коэффициент размножения жертв в отсутствие хищника монотонно убывает с возрастанием численности жертв, что отражает ограниченость пищевых и иных ресурсов. 4) dk2/dx>0, k2(0)<0<k2(). С ростом численности жертв коэффициент размножения хищников монотонно убывает с возрастанием численности жертв, переходя от отрицательных значений, (когда нечего есть) к положительным. 5) Число жертв, истребляемых одним хищником в единицу времени L(x)>0 при N>0; L(0)=0.

Исследование этой модели и ее частных случаев, например, модели Розенцвейга (1965,1969), привело к выводу о том, что регулярные колебания в системе имеют место, если численность хищника ограничивается наличием жертвы. Если численность жертвы ограничивается количеством необходимых ей ресурсов, или численность хищника ограничивается не количеством жертвы, а другим фактором, это приводит к затухающим колебаниям. К затуханию колебаний приводит также наличие убежищ для жертв, которые делают их недоступными для хищников. Амплитуда колебаний будет возрастать, и это приведет в конце концов к вымиранию одного или обоих видов, если хищник может прокормиться при такой плотности популяции жертв, которая значительно ниже допустимой емкости среды (которая следует из логистического уравнения.

Модель взаимодействия двух видов насекомых (MacArthur, 1971) является одной из наиболее известных моделей, которая использовалась для решения практической задачи - борьбы с вредными насекомыми с помощью стерилизации самцов одного из видов. Исходя из биологических особенностей взаимодействия видов была написана следующая модель

Здесь x,y - биомассы двух видов насекомых. Насекомые вида х поедают личинок вида y (член k3y), но взрослые особи вида y поедают личинок вида х при условии высокой численности одного или обоих видов. При малых x смертность вида x выше, чем его собственный прирост. Последний член во втором уравнении отражает прирост биомассы вида y за счет поедания взрослыми насекомыми вида y личинок вида x. Фазовый портрет системы изображен на рис. 10.

Здесь x,y - биомассы двух видов насекомых. Насекомые вида х поедают личинок вида y (член k3y), но взрослые особи вида y поедают личинок вида х при условии высокой численности одного или обоих видов. При малых x смертность вида x выше, чем его собственный прирост. Последний член во втором уравнении отражает прирост биомассы вида y за счет поедания взрослыми насекомыми вида y личинок вида x. Фазовый портрет системы изображен на рис. 10.

Динамика человеческой популяции

Рост человеческой популяции представляет собой специальную проблему. Человечество, как биологический вид, подчиняется биологическим законам роста, в который включены общие для всех живых организмов процессы рождения и гибели. Антропоцентризм, присущий людям, долгое время приводил к тому, что рост и развитие человечества рассматривались как цепь исторических событий, различных для разных стран, а количественное описание человечества как вида, казалось малоинформативным. Однако сейчас, на грани тысячелетий, стало ясно, что Земля представляет собой огромную, но ограниченную относительно замкнутую систему, и рост населения становится основной глобальной проблемой человечества, которая порождает все остальные глобальные проблемы, в том числе атропогенные изменения окружающей среды и исчерпание природных ресурсов.

Экологами давно замечено, что человеческий вид является единственным видом, рост численности которого происходит без видимого ограничения по закону, более крутому, чем экспоненциальный. Кривая роста хорошо описывается уравнением вида

(25)

Если ввести безразмерные переменные,

приходим к дифференциальному уравнению с квадратичной правой частью

(26)

Квадратичный закон описывает простейшее коллективное взаимодействие, которое эффективно суммирует все процессы и взаимодействия, происходящие в обществе, подобное бимолекулярному взаимодействию молекул в растворе

Оценки параметров этой модели на основании демографических данных дают следующие значения. K=67 000 представляет собой число особей (людей), которое определяет размер группы, в которой проявляются коллективные признаки сообщества людей. Это может быть оптимальный масштаб города или района большого города, обладающего системной самодостаточностью. В популяционной генетике числа такого порядка определяют численность устойчиво существующего вида. Величина представляет собой характерное время для человека и составляет 42 года.

С.П.Капица в работе "Нелинейная динамика в анализе глобальных демографических проблем"С.П.Капица и др., Синергетика и прогнозы будущего, М., 1997), отмечает, что квадратичный закон роста следует рассматривать как выражение всей совокупности процессов, объективно определяющих скорость роста человечества как вида. Сохранение формулы роста в течение многих веков показывает, что в человеческом обществе существует общий закон "перемешивания информации", который приводит к самоускорению развития, причем каждый следующий шаг использует все, накопленное человечеством за предыдущее dремя развития.

Решение уравнения (25) приводит к гиперболической кривой роста, обращающейся в бесконечность в конечное время:

(27)

Здесь T1- критическая дата, соответствующая асимптоте кривой роста. Аналогичная формула была получена в 1975 г. Хорнером эмпирически из анализа демографических данных за тысячи лет истории человечества. По его оценкам

Из сравнения формул следует, что ожидающийся критический год - 20025. Интересно, что близкую дату начала изменений тенденций роста человеческой популяции указывали Медоуз и др. в классической работе "Пределы роста".

Формула (27) представляет собой гиперболу, асимптотически приближающуюся к нулю при T (за 0 принимается Р.Х.). Ясно, что на далеких временах она не может правильно описывать численность, так как история человечества конечна. Чтобы описать рост на малых временах, в уравнения добавляется линейный член, связанный с временем жизни отдельного человека:

(28)

На временах, близких к критической дате, также необходимо модифицировать уравнение, например. Записав его в виде:

(29)

Таким образом введение микроскопического (по сравнению с характерным временем роста человечества) параметра , удается продолжить решение в прошлое и будущее и определить пределы применимости основной формулы (25). Ясно, что на временах t сравнимых с , то есть при приближении к критической дате T1 уравнение (25-26) становится неприменимым. Действительно, начиная с 1965 г. наблюдаются отклонения в сторону уменьшения скорости роста человечества. По-видимому, эту дату можно считать началом времени глобального демографического перехода от квадратичного закона роста (25-26) к закону роста типа (29), который приведет к уменьшению скорости роста до нуля и стабилизации численности человечества к концу следующего столетия на уровне 11-14 млрд человек. (По данным ООН к 2000 году реальное население мира составит 6,3 млрд человек). Эти прогнозы не сильно отличаются от прогнозов. сделанным по демографами по другим гораздо более детальным методикам, суммирующих численность населения в разных странах.

Стабилизация численности населения будет происходить по сценарию "демографического перехода", который уже осуществился во многих развитых странах. Демографический переход представляет собой системный процесс перехода в фазовом пространстве, где одна из координат соответствует численности населения, от одного аттрактора к другому. Представление о возрастном распределении населения стран до и после демографического перехода дает рис. 13.

Рис.13. Распределение населения мира по возрасту и полу в развитых (а) и развивающихся (б) странах. В 1975 и 2000 годах. (Садык Н., Народонаселение мира. ЮФПЛА, 1990).Развитые страны прошли демографический переход, развивающиеся - еще нет.

После демографического перехода коренным образом меняется соотношение между старым и молодым поколением. Происходит эволюция структуры населения от пирамиды, характерной для периода роста. К столбообразному распределению, при котором рост населения практически прекращается. Рассмотрение в рамках предложенной модели предсказывает, что гиперболический рост численности населения Земли сменится тенденцией к стабилизации численности, как это уже произошло в развитых странах.

Заключение.

Математические модели - не только средство для количественного описания явлений. Модель сложной системы - это математический образ, позволяющий формализовать и обобщить в терминах теории представления о многочисленных свойствах и характеристиках сложной системы. Расширение понятийного и образного круга не меньше чем количественные расчеты представляет собой ценный результат междисциплинарных исследований с применением аппарата математики и физики для изучения живых систем. В этом смысле популяционная динамика занимает особое место. При всей ограниченности "числа особей", как характеристики вида или сообщества, значение термина "численность" имеет четкий и универсальный смысл.

Популяционная динамика представляет собой область математической биологии, описывающая с помощью моделей типы динамического поведения развивающихся систем, представляющих собой одну или несколько взаимодействующих популяций или внутрипопуляционных групп. Отличительной чертой биологических популяций, как и всех живых систем, является их удаленность от термодинамического равновесия, использование для своего роста и развития энергии внешних источников. Это обуславливает необходимость использования для описания таких систем нелинейных моделей, позволяющих отразить основные характерные черты популяционной динамики лабораторных и природных популяций. Это - ограниченность роста, вызванная совокупностью факторов. Возможность нескольких стационарных исходов в зависимости от начальных условий роста популяции. "Зависание" системы вблизи критической границы и ее чувствительность в этой области к малым флуктуациям и индивидуальным усилиям. Запаздывание реакции системы на изменение внешних факторов. Возможность колебательных и квазистохастических режимов.. Математические результаты, полученные при изучении моделей популяционной динамики служат для практических целей управления биотехнологическими и природными системами и, дают пищу для развития собственно математических теорий.

Литература.

1) А.Д.Базыкин. Математичесакая биофизика взаимодействующих популяций. М., Наука, 1985, 165 с.

2) М.Бигон, Дж.Харпер., К. Таунсенд. Экология. Особи, популяции и сообщества. М., Мир. 1989, Том 1, 657 с.

3) Пайтген Х.-О., Рихтер П.Х. Красота фракталов. Образы комплексных динамических систем. М., Мир, 1993, 176 с.

4) Ризниченко Г.Ю., Рубин А.Б. Математические модели биологических продукционных процессов. М., Изд. МГУ, 1993, 301 с..

5) Ю.М.Свирежев, О.Д.Логофет. Устойчивость биологических сообществ. М., Наука, 1978, 352 с.

6) С.П.Капица, С.П.Курдюмов, Г.Г.Малинецкий. Синергетика и прогнозы будущего. М., Наука, 1997.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Здравствуйте! Если Вам нужна помощь с учебными работами, ну или будет нужна в будущем (курсовая, дипломная, отчет по практике, контрольная, РГР, решение задач, онлайн-помощь на экзамене или "любая другая" работа...) - обращайтесь: VSE-NA5.RU Поможем Вам с выполнением учебной работы в самые короткие сроки! Сделаем все быстро и качественно. Предоставим гарантии!
Владимир03:27:59 14 мая 2019

Работы, похожие на Реферат: по истории и философии науки История изучения динамики популяций

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(229717)
Комментарии (3128)
Copyright © 2005-2019 BestReferat.ru bestreferat@gmail.com реклама на сайте

Рейтинг@Mail.ru