Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: «Микрокристаллоскопия»

Название: «Микрокристаллоскопия»
Раздел: Остальные рефераты
Тип: реферат Добавлен 21:37:49 07 октября 2011 Похожие работы
Просмотров: 740 Комментариев: 6 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Государственное образовательное учреждение физико-математический лицей 1568

Реферат по теме

«Микрокристаллоскопия»

Реферат подготовил

ученик 9 класса

Снигиров Антон

Москва, 28 марта 2010 года


План реферата:

  1. Микрокристаллоскопия – раздел аналитической химии.
  2. Реакции обнаружения катионов:

· Классификация катионов;

· Обнаружение катионов:

1. I группы;

2. II группы;

3. III группы;

4. IV группы;

5. V группы;

6. VI группы.

  1. Реакции обнаружения анионов:

· Классификация анионов;

· Обнаружение анионов:

1. I группы;

2. II группы;

3. III группы.

  1. Вывод.
  2. Список использованной литературы.

Аналитическая химия

А налитическая химия — раздел химии, изучающий химический состав и структуру веществ. Она занимается разработкой и совершенствованием аналитических методов. Аналитическая химия разделяется на качественный и количественный анализы.

Качественный анализ направлен на обнаружение в образце какого-то определённого вещества.

Основоположником качественного анализа считается Р. Бойль, который ввёл представление о химических элементах как о неразлагаемых основных частях сложных веществ и систематизировал все известные в его время качественные реакции.

Большое влияние на развитие аналитической химии оказало открытие периодического закона Д. И. Менделеева. Это дало возможность использовать аналогию в свойствах элементов для разработки новых реакций и методов определения новых элементов.

Большой вклад в развитие аналитической химии внесла гидратная теория растворов Д. И. Менделеева и теория электролитической диссоциации С. Аррениуса.

На протяжении всего XIX века методы качественного анализа непрерывно развивались. В 1860 году Р. Бунзеном и Г. Кирхгофом был разработан метод спектрального анализа, благодаря которому были открыты такие элементы, как индий и таллий. М. С. Цвет предложил хроматографический метод анализа, а М. А. Ильинский и Л. А. Чугаев – использование в анализе органических реагентов


Микрокристаллоскопия

Микрокристаллоскопия — метод качественного обнаружения неорганических и органических веществ по образованию характерных кристаллических осадков при действии аналитических реактивов. Образовавшиеся кристаллы исследуют под микроскопом (увеличение в 60 и более раз); о составе осадка судят главным образом по форме кристаллов, а также по их цвету и размеру. Образующиеся кристаллы приобретают характерную форму только при медленном выделении, то есть в разбавленных растворах. При высоких концентрациях осаждаемых веществ, а также при наличии посторонних соединений возможно искажение формы кристаллов. В таких случаях для идентификации осадка определяют под поляризационным микроскопом кристаллографические и кристаллооптические характеристики кристаллов (например, углы между гранями), зависящие не от их формы, а от химического состава.

Т. Е. Ловиц изучил формы кристаллов около ста различных «соляных налётов», свёл их в таблицу и тем самым сделал микрокристаллоскопию практически важным методом качественного анализа.

Обнаружение катионов

Впервые принципы разделения катионов металлов на аналитические группы был разработан Т. О. Бергманом в конце XVIII века. Тем самым он заложил фундамент систематического качественного анализа.

Катионы разделяют на шесть основных групп по способам их обнаружения:

Группа

Катионы

I

Li(I)[*] NH4+ Na(I) K(I) Mg(II)

II

Ca(II) Sr(II) Ba(II)

III

Ag(I) Hg(I) Pb(II) W(VI)

IV

Zn(II) Al(III) Sn(II, IV) V(V) Cr(III) Mo(VI)

V

Ti(IV) Zr(IV) Sb(II, V) Bi(III) Mn(II) Fe(II, III)

VI

Co(II) Ni(II) Cd(II) Hg(II) Cu(II) Mg(II)

Аналитическая классификация ионов в принципе отличаются от распределения химических элементов по группам в периодической системе элементов, но её никак нельзя назвать искусственной, так как в основе её лежат определённые закономерности, связанные с растворимостью определённых гироксидов элементов. Поскольку Химические свойства ионов обусловлены зарядом ядра и электронной конфигурацией иона, то естественно, что в аналитические группы часто входят ионы, образованныеэлементами разных групп периодической системы.

Обнаружение катионов I группы

Соли катионов первой аналитической группы представляют собой бесцветные кристаллические вещества. В окрашенных солях цвет определяется анионом, например, кристаллы KMnO4 имеют фиолетовую окраску, а K2Cr2O7 – оранжевую.

Большинство солей, содержащих катионы первой группы, хорошо растворимы в воде. Однако, известны несколько солей, обладающих низкой растворимостью. Они-то и используются для осаждения катионов первой группы. Например, для осаждения ионов натрия используют антимонат калия (при этом выпадают белые кристаллы нерастворимого антимоната натрия Na[Sb(OH)6]).

К первой аналитической группе также относят катион аммония, который по ионному радиусу занимает промежуточное положение между катионами K+ и Rb+ и вступает в реакции на катион калия.

При анализе полного состава катионы первой группы подразделяют на две подгруппы. Первая подгруппа – это катионы NH4+ , K+ , Rb+ и Сs+ . Данные катионы осаждаются общими реагентами (Na3[Co(No2)6] или NaHC4H4O6), а катионы второй группы – Li+ и Na+ общего реагента не имеют.

Обнаружение катионов Na + . На предметное стекло помещается капля исследуемого образца и выпаривается досуха. Осадок обрабатывается каплей раствора уранилацетата UO2(CH3COO)2, рассматриваемые под микроскопом кристаллы натрийуранилацетата имеют такую форму:

Обнаружение катионов K + . На предметное стекло помещается капля исследуемого раствора, а рядом с ним помещают каплю Na2PbCu(NO2)6. Две капли соединяют стеклянной палочкой. Образующиеся кристаллы K2PbCu(NO2)6 имеют такую форму:

Обнаружение катионов Mg 2+ . Гидрофосфат магния образуется при действии на растворы солей магния в присутствие аммиака при Рh=9:

Mg2+ + HPO42- + NH3 => MgNH4PO4

При анализе кислого раствора рекомендуется прибавлять аммиак до Ph=9.

При медленной кристаллизации образуются кристаллы, изображенные на верхнем рисунке, а при более быстрой кристаллизации – изображённые на нижнем рисунке.

Обнаружение катионов II группы

Ко второй группе относят ионы щёлочно-земельных металлов, составляющих подгруппу А периодической системы элементов. Химические и физические свойства данных катионов изменяются по мере увеличения атомной массы и ионного радиуса. Например, растворимость сульфатов и хроматов последовательно уменьшается в ряду Ca2+ >Sr2+ >Ba2+ >Ra2+ , и лишь растворимость фторидов изменяется в обратном направлении: Ba2+ >Sr2+ >Ca2+ .

Групповой реагент этой группы – разбавленная серная кислота. Растворимости сульфатов радия, бария и стронция низкие и эти соли выпадают осадок при действии на раствор, содержащий данные катионы серной кислотой. Но произведение растворимости CaSO4 – 9,1*10^-6, и из-за этого осаждение ионов Ca2+ Серной кислотой неполное. Поэтому, чтобы не «потерять» ионы Ca2+ при анализе, необходимо провести проверочную реакцию на катионы Ca2+ после осаждения катионов второй группы.

Но ионы Be2+ и Mg2+ вследствие малых радиусов их атомов и относительно большого заряда их ядер обладают иными свойствами по сравнению с катионами второй группы. Ни ион Be2+ , ни Mg2+ не осаждаются разбавленной серной кислотой.

Гидроксид магния – слабое основание, малорастворимое в воде. Осаждается из растворов солей магния щелочами. Поэтому его относят к шестой аналитической группе.

Гидроксид бериллия же амфотерен и по своим свойствам близок к гидроксиду алюминия. Поэтому его относят к четвёртой аналитической группе.

Обнаружение катионов Ca2 + . Одну каплю исследуемого раствора помещают на предметное стекло, добавляют разбавленную серную кислоту и осторожно нагревают на маленьком пламени газовой горелки до появления белой каймы.

По краям капли образуются игольчатые кристаллы в виде звёздочек:

Обнаружение катионов III группы

Ко второй аналитической группе относятся катионы металлов, входящих в В подгруппу первой группы периодической системы элементов: Сu+ , Ag+ и Au+ , а также близкие к ним по химическим свойствам катионы [Hg2]2+ , Tl+ и Pb2+ .

Хотя медь, серебро и золото имеют по одному S-электрону на внешнем подуровне и после отдачи его переходят в однозарядные катионы, тем не менее свойства их резко отличаются от свойств катионов первой аналитической группы. Это объясняется тем, что после отдачи внешнего S-электрона они принимают 3d10 -, 4d10 - и 5d10 -электронную конфигурацию, которая и обуславливает их свойства, способность образовывать ионы разной степени окисления и проявлять свойства комплексообразователей.

К этим катионам близки по своим электронным конфигурациям катионы двухатомной однозаряднй ртути, однозарядного таллия и двухзарядного свинца.

Низкозарядные катионы с законченными 18-электронными оболочками или с 18+2 электронами являются сильными поляризаторами и сами способны к значительной поляризации. Поляризация приводит к уменьшению расстояния между ионами, увеличению энергии связи между ними, к переходу ионных связей в полярные. Взаимодействуя с поляризующимися ионами (Cl- , Br- , I- , CN- , CO3- , SO42- , Po43- ), они образуют малополярные ковалентные соединения, труднорастворимые в воде.

Таким образом, большинство солей катионов второй аналитической группы нерастворимы в воде. Они также могут образовывать многочисленные комплексные соединения, которые используются в анализе для разделения и открытия катионов.

Групповой реагент третьей аналитической группы – разбавленная хлороводородная кислота, которая осаждает катионы этой руппы в виде хлоридов, представляющих собой ковалентные малорастворимые соединения.

Обнаружение катионов Ag + . При медленной кристаллизации из растворов Ag(NH3)2Cl выпадает в виде мелких характерных кристаллов – треугольников, шестиугольников и звёздочек:

К 2-3 каплям исследуемого на ионы серебра раствора, подкисленного азотной кислотой и добавляют 2-3 капли 2 М соляной кислоты. Образующийся аморфный белый осадок центрифугируют, промывают и обрабатывают 2-3 каплями концентрированного раствора аммиака. Каплю полученного раствора помещают на предметное стекло и после испарения растворителя образовавшиеся кристаллы рассматривают под микроскопом.

Обнаружение катионов Pb 2+ . Ионы свинца осаждаются иодид-ионами в виде жёлтого осадка PbJ2,легкорастворимого при нагревании и вновь выпадающего при охлаждении раствора.

К 2-3 каплям исследуемого раствора добавляют 2-3 капли 2М раствора Ch3CooH и 2-3 капли KJ. Образующийся жёлтый осадок нагревают до кипения и охлаждают. Выпадает золотисто-жёлтый осадок в виде красивых блестящих лепестков:

Обнаружение катионов IV группы

Четвёртую группу образуют катионы гидроксидов, растворимых в щелочах. К ней относят катионы, гидроксиды которых обладают амфотерностью. В периодической системе амфотерные элементы занимают средние места в периодах по диагонали из верхнего левого к правому нижнему углу. Типичные элементы, образующие амфотерные гидроксиды: бериллий, алюминий, хром, цинк, германий, мышьяк, олово, сурьма, свинец. P-орбитали у атомов этих элементов не достроены, за исключением хрома, у которого во внешнем слое находятся пять электронов на D-орбитали и один – на S-орбитали. Хром – переходный металл с хорошо выраженной способностью к комплексообразованию.

Катионы сурьмы и висмута хотя и обладают амфотерностью, но при систематическом ходе анализа они оказываются в осадке вместе с катионами пятой группы. Так, например, щёлочи и аммиак осаждают из солей висмута (III) белый осадок гидроксида висмута, превращающегося в гидроксид висмутила BiO(OH), который не растворяется в избытке реагента. Поэтому эти катионы относят к пятой аналитической группе.

Групповой реагент катионов четвёртой группы – раствор едкого натра или едкого кали. Действуя на смесь катионов четвёртой группы избытком щёлочи, получают соли, которые хорошо растворяются и центрифугированием или фильтрованием отделяются от катионов пятой и шестой групп и анализируются дробным или систематическим путём.

Обнаружение катионов Zn 2+ . С тетрароданомеркуратом аммония в слабокислой среде ионы цинка образуют характерные кристаллы – кресты, дендриты; в подкисленных минеральной кислотой или разбавленных растворах кристаллы имеют вид неравносторонних треугольников и клиньев.

На предметное стекло помещают каплю исследуемого раствора, рядом помещают каплю реагента. Капли соединяют стеклянной палочкой и рассматривают образовавшиеся кристаллы под микроскопом.

Обнаружение катионов V группы

К пятой аналитической группе относят ионы переходных элементов семейства железа: Ti4+ , Mn2+ , Fe2+ , Fe3+ , а также Sb3+ , Sb5+ и Bi3+ , осаждаемые концентрированным раствором аммиака.

Переходные элементы характеризуются рядом общих свойств: все они являются типичными металлами; почти все проявляют переменную степень окисления, благодаря чему способны участвовать в окислительно-востановительных реакциях; их ионы и соединения, как правило, окрашены. Переходные элементы обладают ярко выраженной тенденцией к комплексообразованию. Все эти особенности переходных элементов используются в качественном анализе.

Пятая аналитическая группа катионов характеризуется тем, что их гидроксиды не обладают амфотерностью и не образуют растворимых комплексных аммиакатов.

Реакции обнаружения катионов пятой группы основаны либо на реакциях окисления-восстановления, либо на реакциях комплексообразования, либо на реакциях гидролиза.

Обнаружение катионов Bi3 +. Комплексные ионы BiI52+ c ионами Cs+ и Rb+ образуют оранжево-красные кристаллы состава Cs2BiI5*2,5H2O.

На предметном стекле к капле исследуемого раствора добавляют каплю 2М HCl, каплю раствора KJ и кристаллик CsCl или RbCl, образовавшиеся кристаллы рассматривают под микроскопом.

Обнаружение катионов VI группы

Шестую аналитическую группу составляют катионы, гидроксиды которых образуют с раствором аммиака комплексные аммиакаты.

Все катионы шестой группы относятся к переходным элементам, в которых идёт достройка D-уровней. При взаимодействии переходных элементов с веществами, являющимися донорами электронных пар, происходит образование ковалентных связей по донорно-акцепторному механизму, в результате чего и образуются комплексы. Так, при действии группового реагента – раствора аммиака все катионы шестой группы переходят в раствор в виде комплексных аммиакатов следущего состава: [Cu(NH3)4]2+ , [Hg(NH3)4]2+ , [Cd(NH3)6]2+ , [Ni(NH3)6]2+ .

Из катионов других аналитических групп этим свойством обладают лишь катионы Ag+ и Zn2+, которые также можно отнести к шестой группе, но исходя из последовательности химического анализа и, следовательно, из практической целесообразности, катион Ag+ отнесён к III группе, а катион Zn2+ - к четвёртой аналитической группе.

Обнаружение катионов Cu 2+ . При действии (NH4)2Hg(SCN)4 в уксуснокислой среде Cu2+ в присутствии Zn2+ образует изоморфные кристаллы фиолетового цвета СuHg(SCN)4 (на верхней картинке) и ZnHg(SCN)4 (на нижней картинке). Но чтобы эта реакция удалась, необходимо брать очень разбавленный раствор меди, иначе вместо фиолетового выделяется жёлто-зелёный осадок CuHg(SCN)4.

К капле исследуемого раствора добавляют каплю 30% раствора CH3COOH и каплю раствора реагента. Образуются характерные кристаллы желтовато-зелёного цвета CuHg(SCN)4 в виде звёздочек. Они рассматриваются под микроскопом.

Обнаружение анионов

Анионы делятся на три аналитические группы, в зависимости от растворимости их бариевых и серебряных солей:

Группа

Анионы

I

SO42- , SO32- , CO32- ? PO43- , SiO32-

II

Cl- , Br- , J- , S2-

III

NO3- , NO2- , CHCOO-

Обнаружение анионов I группы

К первой аналитической группе анионов относят сульфат-ион, сульфит-ион, карбонат-ион, фосфат-ион и силикат-ион. Эти анионы образуют с катионами Ba2+ соли, малорастворимые в воде, но, за исключением сульфата бария, хорошо растворимые в минеральных кислотах. Поэтому выделить анионы этой группы в виде осадка групповым реагентом – хлоридом бария можно только в нейтральной или слабощелочной среде. Анионы первой группы образуют с катионами серебра соли, растворимые в разбавленной азотной кислоте, а сульфат серебра растворим даже в воде.

При анализе на анионы первой группы сначала исследуют раствор на эти ионы групповым реагентом, и в случае выпадения осадка (нерастворимой соли бария) исследуют раствор на каждый из анионов.

Обнаружение анионов SO 42- . Существует множество способов обнаружения этого аниона, в частности:

-хлорид бария образует с ним белый нерастворимый в кислотах осадок BaSO4:

BaCl2 + SO42- => BaSO4

-нитрат серебра при взаимодействии с этим анионом образует белый осадок сульфата серебра, растворимый в азотной кислоте:

2Ag+ + 2NO3- + SO42- => Ag2SO4+ 2NO3-

Однако при выполнении последней реакций следует учесть, что осадок сульфата серебра будет выпадать только из концентрированных растворов.

Возможна и микрокристаллоскопическая реакция на сульфат-ион: одну каплю исследуемого раствора помещают на предметное стекло, добавляют раствор нитрата кальция и осторожно нагревают на маленьком пламени газовой горелки до появления белой каймы.

По краям капли образуются игольчатые кристаллы в виде звёздочек:

Обнаружение анионов SO 32- . Выбор реакций на этот анион не менее богат, например: окисление йодом или бромом серы от +4 до +6 (при этом йодная или бромная вода обесцвечивается); образование при взаимодействии с хлоридом бария растворимого в кислотах осадка сульфита бария; образование при взаимодействии с нитратом серебра растворимого в азотной кислоте осадка сульфита серебра.

Так же возможно восстановление сульфит-иона до сероводорода. К исследуемому раствору добавляют разбавленную хлороводородную кислоту и кусочек цинка при этом протекают слудующие реакции:

SO32- + 2HCl => 2CL- + H2O + SO2

3Zn + 6HCL + SO2 => 3 ZnCL2+ 2H2O + H2S

Выделяющийся при этом сероводород можно узнать по запаху или по чернению бумаги, смоченной ацетатом свинца. Реакция протекает при Ph=4 и если испытуемый раствор не содержит восстановителей.

Обнаружение анионов С O 32- . Хлорид бария осаждает анион CO32- , образуя белый осадок карбоната бария, растворимый в кислотах:

Ba2+ + CO32- => BaCO3 + 2Cl-

Нитрат серебра также образует с этим анионом белый осадок, растворимый в кислотах.

Кислоты разлагают соли угольной кислоты с выделением углекислого газа, который можно обнаружить известковой водой.

Обнаружение анионов PO 43- . Хлорид бария образует с анионом PO43- белый осадок гидрофосфата бария, растворимый в кислотах, а нитрат серебра даёт жёлтый осадок фосфата серебра, растворимый в азотной кислоте.

Магнезиальная смесь (MgCl2, NH3*H2O, NH4CL) с анионами PO43- образует белый кристаллический осадок:

HPO42- + NH3*H2O + Mg2+ => MgNH4PO4 + H2O

Обнаружение анионов II группы

Ко второй аналитической группе относятся хлорид-ион, бромид-ион, йодид-ион и сульфид-ион. Эти анионы образуют с катионом Ag+ соли, нерастворимые в воде и разбавленной азотной кислоте. Групповой реагент второй группы – нитрат серебра в присутствии азотной кислоты. Хлорид бария с анионами второй группы осадков не образует.

При анализе на анионы второй группы следует сначала доказать наличие в растворе на этих ионов групповым реагентом, и в случае выпадения осадка (нерастворимой соли серебра) приступить к исследованию раствора на каждый из анионов.

При анализе на катионы второй группы удобно использовать нитрат серебра,

так как галогениды серебра (кроме фтористого серебра) нерастворимы в воде и легко различимы по цвету: хлорид серебра – белый творожистый осадок; бромид серебра – слабо-жёлтый, йодид серебра – ярко жёлтый, а сульфид серебра – чёрный.

Хлорид серебра растворяется в астворе аммиака, образуя комплексную соль серебра [Ag(NH3)2]Cl, которая под действием азотной кислоты вновь разлагается на хлорид серебра и аммиак. Однако, обнаружение хлорид-иона в присутствии бромид-иона не предоставляется возможным. Йодид серебра имеет значительно меньшее произведение растворимости и практически нерастворим в растворе аммиака, тогда как бромид серебра растворяется в аммиачной воде и в дальнейшем мешает открытию хлорид-иона. Для понижения растворимости бромида серебра осадки AgCl, AgBr и AgJ обрабатывают 12-процентным раствором карбоната аммония. Хлорид серебра перейдёт в раствор в виде комплексной соли – диаминоаргентахлорида. После отеления осадка в центрифугате открывают хлорид-ион действием раствора бромида калия.

Существуют и другие способы обнаружения ионов второй группы:

-Окислеие хлорид-иона до свободного хлора (йодид- и бромид-ионы мешают протеканию этой реакции);

-Окисление хлором брома -1 до молекулярного брома, а йода -1 до молекулярного йода (однако, избыток хлорной воды может вызвать образование хлорида брома или хлорида йода).

-Реакция ионного обмена сульфидов с кислотами, при этом выделяется сероводород.

Также возможна микрокристаллическая реакция по обнаружению йодид-иона: катионы Pb2+ образуют с йодид-ионом золотистые кристаллы PbJ2.

К 2-3 каплям исследуемого раствора добавляют 2-3 капли 2М раствора Ch3CooH и 2-3 капли Pb(NO3)2. Образующийся жёлтый осадок нагревают до кипения и охлаждают. Выпадает золотисто-жёлтый осадок в виде красивых блестящих лепестков:

Обнаружение анионов III группы

К последней, третьей аналитической группе анионов относятся нитрат-ион, нитрит-ион и ацетат-ион. Ни один из этих анионов не образует осадка с катионами серебра или бария. Третья группа не имеет группового реагента.

Обнаружение анионов NO 3- . Нитрат-ион возможно обнаружить в растворе несколькими способами:

-Появление интенсивно-синей окраски при окислении дифениламина нитрат-ионом.

-Восстановление нитрат-иона до моноксида углерода металлической медью в присутствии серной кислоты:

2NO3- + 8H+ + 3Cu => 3Cu2+ + 4H2O +2NO

(монооксид азота, в свою очередь, доокисляется кислородом воздуха до бурого газа)

-Образование комплексной соли [Fe(NO)]SO4 бурого цвета при реакции с сульфатом железа (II) в присутствии серной кислоты:

6FeSO4 + 2NO3- + 4H2SO4 => 3 Fe2(SO4)3 + SO42- + 4H2O + 2NO

2NO + 2FeSO4 => 2[Fe(NO)]SO4

-Восстановление нитратов до аммиака металлическим алюминием в сильнощелочной среде.

Существует также и микрокристаллическая реакция на нитрат-ион:

На каплю раствора, содержащего нитрат-ион, действуют каплей 10-процентного раствора нитрона в 5-процентной уксусной кислоте. Выпадают характерные пучки игл нитратнитрона.

Обнаружение анионов NO 2- . Нитрит-ион может быть разложен кислотой, при этом выделяются окислы азота:

2NO22- + H2SO4 => 2HNO2 + SO42-

2HNO2 => NO + NO2 + H2O

Иодид калия в присутствии разбавленной серной кислоты окисляется нитритами до молекулярного йода:

2I- + 2NO2- + 4H+ => I2 + 2H2O + 2NO

Обнаружение анионов CH3COO- . При взаимодействии спиртов с растворам ацетатов образуются эфиры, которые узнаются по запаху.

Вывод.

Микрокристаллоскопия – довольно молодой, но быстро развивающийся раздел аналитической химии. На практике микрокристаллоскопия удобна тем, что позволяет обнаружить очень небольшие количества данных ионов в растворе. Однако, микрокристаллоскопия требует наличия специального оборудования (микроскопа) и большой точности и аккуратности в операциях.
Список использованной литературы:

Ю. А. Золотов «Основы аналитической химии» (Москва, «Высшая школа», 2001);

Н. Я. Логинов «Аналитическая химия» (Москва, «Просвещение», 1979);

Интернет:

Wikipedia.org .


[*] В книге Ю.А.Золотова (стр.16; см. список литературы) вместо зарядов катионов в скобках отмечен модуль заряда, причём римской цифрой. Например, вместо Ca2+ - Ca(II).

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya17:23:04 01 сентября 2019
.
.17:23:03 01 сентября 2019
.
.17:23:02 01 сентября 2019
.
.17:23:01 01 сентября 2019
.
.17:23:00 01 сентября 2019

Смотреть все комментарии (6)
Работы, похожие на Реферат: «Микрокристаллоскопия»

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(258735)
Комментарии (3485)
Copyright © 2005-2020 BestReferat.ru support@bestreferat.ru реклама на сайте

Рейтинг@Mail.ru