Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Тема разностные фильтры и фильтры интегрирования

Название: Тема разностные фильтры и фильтры интегрирования
Раздел: Остальные рефераты
Тип: реферат Добавлен 02:19:33 17 сентября 2011 Похожие работы
Просмотров: 83 Комментариев: 6 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

Digital signal processing

Тема 4. РАЗНОСТНЫЕ ФИЛЬТРЫ И ФИЛЬТРЫ ИНТЕГРИРОВАНИЯ.

Человечество так старо! Всегда приходится идти по чьим-то стопам.

А. Додэ.

Но люди амбициозны, и всегда пытаются оставить свой след. В любой профессии наследили так, что пора бы уже расчистками старых надежных дорог заняться.

Лариса Ратушная. Уральский геофизик, XX в.

Содержание

Введение.

1. Разностные операторы. Выделение в сигналах шумов. Восстановление утраченных или пропущенных данных. Аппроксимация производных.

2. Интегрирование данных. Алгоритмы интегрирования по формулам трапеций, прямоугольников, Симпсона.

Введение

Основной инструмент проектирования цифровых фильтров – частотный (спектральный) анализ. Частотный анализ базируется на использовании периодических функций синусов и косинусов. По-существу, спектральная характеристика цифрового фильтра – это тонкая внутренняя структура системы, его однозначный функциональный паспорт направленного изменения частотного состава данных, полностью определяющий сущность преобразования фильтром входных данных.

Рассмотрим примеры синтеза и частотного анализа фильтров применительно к известным способам дифференцирования и интегрирования цифровых данных.

4.1. Разностные операторы /24/.

Примеры частотного подхода при анализе разностных операторов.

Разностный оператор 1-го порядка имеет вид:

Dsk = sk+1 -sk .

Последовательное n-кратное применение оператора записывается в виде оператора n-го порядка:

Dn (sk ) = D[Dn-1 (sk )] = Dsk ③ Dn-1 (sk ) (4.1.1)

k

sk

D (sk )

D 2 (sk )

D 3 (sk )

D 4 (sk )

D 5 (sk )

D 6 (sk )

-7

-6

-5

-4

-3

-2

-1

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

-1

0

0

0

0

0

0

1

-2

1

0

0

0

0

0

1

-3

3

-1

0

0

0

0

1

-4

6

-4

1

0

0

0

1

-5

10

-10

5

-1

0

0

1

-6

15

-20

15

-6

1

0

Кq

2

6

20

70

252

924

Выходные значения импульсной реакции разностных операторов на единичный импульсный сигнал Кронекера приведены в таблице. Ряды последовательных разностей содержат знакопеременные биномиальные коэффициенты. В представленной форме разностные операторы являются каузальными фазосдвигающими (односторонними) фильтрами, но нетрудно заметить, что операторы четных степеней могут быть переведены в симметричную форму сдвигом влево на половину окна оператора.

В последней строке таблицы приводятся коэффициенты усиления дисперсии шумов, значение которых резко нарастает по мере увеличения порядка оператора. Это позволяет использовать разностные операторы с порядком выше 1 для определения местоположения статистически распределенных шумов в массивах данных. Особенно наглядно эту возможность можно видеть на частотных характеристиках операторов.

Подставляя сигнал s(k) = exp(jwk) в (4.1.1) и упрощая, получаем:

Dn s(k) = (jn ) exp(jwn/2) [2 sin(w/2)]n exp(jwk).

H(w) = (jn ) exp(jwn/2) [2 sin(w /2)]n (4.1.2)

Так как модуль первых двух множителей в выражении (4.1.2) равен 1, зависимость коэффициента передачи разностного оператора от частоты определяется вторым сомножителем (2 sin(w/2))n и представлена на рисунке 4.1.1.

Рис. 4.1.1. Разностные фильтры.

Выделение в сигналах шумов. Как следует из графиков на рис. 4.1.1, разностные операторы подавляют постоянную составляющую сигнала и его гармоники в первой трети интервала Найквиста и увеличивают высокочастотные составляющие сигнала в остальной части интервала тем больше, чем больше порядок оператора. Как правило, эту часть главного интервала спектра сигналов занимают высокочастотные статистические шумы.

Шумы при анализе данных также могут представлять собой определенную информацию, например, по стабильности условий измерений и по влиянию на измерения внешних дестабилизирующих факторов. На рис. 4.1.2 приведен пример выделения интервалов интенсивных шумов в данных акустического каротажа, что может свидетельствовать о сильной трещиноватости пород на этих интервалах. Такая информация относится уже не шумовой, а к весьма полезной информации при поисках и разведке нефти, газа и воды.

Рис. 4.1.2.

Восстановление утраченных данных. Разностные операторы имеют одну особенность: оператор n+1 порядка аннулирует полином степени n, т.е. свертка оператора порядка n+1 с полиномом n-ой степени дает нулевые значения: Dn+1 ③ Pn (k) = 0.

Пример. P2 (k) = xk = 1+2k-k2 , k = 0,1,2,... xk = 1,2,1,-2,-7,-14,-23,-34,... yk = xk ③ D3 =0,0,0,0,...

Эту особенность можно использовать для создания очень простых и достаточно надежных операторов восстановления в массивах пропущенных и утраченных значений или для замены аннулированных при обработке величин (например, явных выбросов).

Если считать, что отрезок данных, содержащий пропуск, является многочленом некоторой степени, то свертка данных с разностным оператором следующего порядка должна быть равна нулю. Так, при аппроксимации данных многочленом третьей степени для любой точки массива должно выполняться равенство:

D4 ③(sk ) = sk-2 -4sk-1 +6sk -4sk+1 +sk+2 = 0.

Интерполяционный фильтр восстановления утраченной центральной точки данных:

sk = (-sk-2 +4sk-1 +4sk+1 -sk+2 )/6. (4.1.3)

Соответственно, оператор фильтра восстановления данных h(n) = (-1,4,0,4,-1)/6. Коэффициент усиления шумов s2 = 17/18 = 0.944.

Пример. Фактический отрезок массива данных: xk = {3,6,8,8,7,5,3,1}.

Допустим, что на отрезке был зарегистрирован явный выброс: xk = {3,6,8,208,7,5,3,1}.

Отсчет с выбросом аннулирован. Замена отсчета: x3 = (-x1 +4x2 +4x4 -x5 )/6= (-6+32+28-5)/6 » 8.17.

В массиве утрачен 5-й отсчет. Восстановление: x4 = (-x2 +4x3 +4x5 -x6 )/6 = (-8+32+20-3)/6 » 6.83.

Рис. 4.1.3. Разностные фильтры.

Принимая в (4.1.3) k = 0 и подставляя сигнал sk = exp(jwk), получаем частотную характеристику фильтра восстановления данных 4-го порядка:

H(w) = (4 cos w - cos 2w)/3.

Вид частотной характеристики для фильтров восстановления пропущенных данных 4-го и 6-го порядков приведен на рис. 4.1.3. Графики наглядно показывают, что применение разностных интерполяционных фильтров восстановления данных возможно только для сигналов, высокочастотные составляющие которых минимум в три раза меньше частоты Найквиста. Интерполяционные фильтры выше 4-го порядка применять не рекомендуется, т.к. они имеют коэффициент усиления шумов более 1.

На рис. 4.1.4 – 4.1.6 приведены примеры восстановления утраченных данных во входных сигналах оператором 3-го порядка и спектры сигналов в сопоставлении с передаточной функцией оператора восстановления данных.

Рис. 4.1.4. Восстановление незашумленных данных. Рис.4.1.5. Спектры.

Рис. 4.1.6. Восстановление зашумленных данных.

В сигналах, представленных на рисунках, утрачен каждый 10-ый отсчет (например, при передаче данных) при сохранении тактовой частоты нумерации данных. Учитывая, что все значения входных сигналов положительны, индикатором пропуска данных для работы оператора служат нулевые значения. В любых других случаях для оператора восстановления данных необходимо предусматривать специальный маркер (например, заменять аннулированные данные или выбросы определенным большим или малым значением отсчетов).

Как следует из рис. 4.1.5, спектр полезного сигнала полностью находится в зоне единичного коэффициента частотной характеристики оператора, и восстановление данных выполняется практически без погрешности (рис. 4.1.4). При наложении на сигнал статистически распределенных шумов (рис. 4.1.6) погрешность восстановления данных увеличивается, но для информационной части полного сигнала она, как и во входных данных, не превышает среднеквадратического значения (стандарта) флюктуаций шума.

Аппроксимация производных - вторая большая область применения разностных операторов. Оценки первой, второй и третьей производной можно производить по простейшим формулам дифференцирования:

(sn )' = (sn+1 -sn-1 )/2Dt. h1 = {-0.5, 0, 0.5}. (4.1.4)

(sn )'' = (sn+1 -2sn +sn-1 )/Dt. h2 = {1, -2, 1}.

(sn )''' = (-sn+2 +2sn+1 -2sn-1 +sn-2 )/2Dt. h3 = {0.5, -1, 0, 1, -0.5}.

Оператор первой производной является нечетной функцией и имеет мнимый спектр. Если принять s(t) = exp(jwt), то истинное значение первой производной должно быть равно: s'(t) = jw exp(jwt). Передаточная функция H(w) = jw. Оценка первой производной в точке n = 0 по разностному оператору при Dt = 1: s'(0) = (exp(jw)-exp(-jw))/2 = j sin w = H1(w). Отношение расчетного значения к истинному на той же точке: K1(w) = sin(w)/w. Графики функций в правой половине главного диапазона приведены на рис. 4.1.7.

Рис. 4.1.7.

Как следует из приведенных выражений и графиков, значение К(w) равно 1 только на частоте w = 0. На всех других частотах в интервале Найквиста формула дает заниженные значения производных. Однако при обработке практических данных последний фактор может играть и положительную роль, если сигнал низкочастотный (не более 1/3 главного диапазона) и зарегистрирован на уровне высокочастотных шумов. Любое дифференцирование поднимает в спектре сигнала долю его высокочастотных составляющих. Коэффициент усиления дисперсии шумов разностным оператором дифференцирования непосредственно по его спектру в главном диапазоне:

Kq = (1/p)(sin w)2 dw = 0.5.

При точном дифференцировании по всему главному диапазону:

Kq = (1/p)w2 dw = 3.29.

Следовательно, разностный оператор имеет практически в шесть раз меньший коэффициент усиления дисперсии шумов, чем точный оператор дифференцирования.

На рис. 4.1.8 показан пример дифференцирования гармоники с частотой 0.1 частоты Найквиста (показана пунктиром) и этой же гармоники с наложенными шумами (сплошная кривая).

Рис. 4.1.8. Пример дифференцирования (входные сигналы – вверху, выходные – внизу).

Оператор второй производной относится к типу четных функций. Частотная функция оператора: H2(w) = -2(1-cos w). Собственное значение операции H(w) = -w2 . Отношение фактического значения к собственному

K2(w) = [sin(w/2)/(w/2)]2 ,

и также равно 1 только на частоте w = 0. На всех других частотах в интервале Найквиста формула дает заниженные значения производных, хотя и меньшие по относительным значениям, чем оператор первой производной. Частотные графики дифференцирования приведены на рис. 4.1.9. Коэффициент усиления дисперсии шумов оператором второй производной равен 6 при собственном значении дифференцирования, равном 19.5. Эти значения показывают, что операция двойного дифференцирования может применяться только для данных, достаточно хорошо очищенных от шумов, с основной энергией сигнала в первой трети интервала Найквиста.

Рис. 4.1.9. Частотные функции оператора 2-ой производной.

В принципе, вторую производную можно получать и последовательным двойным дифференцированием данных оператором первой производной. Однако для таких простых операторов эти две операции не тождественны. Оператор последовательного двойного дифференцирования можно получить сверткой оператора первой производной с самим собой:

2 h1 = h1 ③ h1 = {0.25, 0, -0.5, 0, 0.25},

и имеет коэффициент усиления дисперсии шумов всего 0.375. Частотная характеристика оператора:

2 H1(w) = -0.5[1-cos(2w)].

Графики 2 H1(w) и коэффициента соответствия 2 K1(w) приведены пунктиром на рис. 4.1.9. Из их сопоставления с графиками второй производной можно видеть, что последовательное двойное дифференцирование возможно только для данных, спектральный состав которых занимает не более пятой начальной части главного диапазона, и по точности хуже оператора второй производной.

Рис. 4.1.10. Вторая производная гармоники с частотой w=0.2p при Dt=1

(пунктир – двойное последовательное дифференцирование)

Пример применения двух операторов второй производной приведен на рис. 4.1.10.

Частота Найквиста главного диапазона обратно пропорциональна интервалу Dt дискретизации данных (wN = p/Dt), а, следовательно, интервал дискретизации данных для корректного использования простых операторов дифференцирования должен быть в 3-5 раз меньше оптимального для сигналов с известными предельными частотами спектрального состава.

Частотные функции для третьей производной предлагается получить самостоятельно.

4.2. Интегрирование данных /24/

Интегрирование сигналов реализуется рекурсивными цифровыми фильтрами. Рассмотрим примеры анализа интегрирующих операторов.

Как известно, для точной операции интегрирования финитных сигналов в общем случае действительно преобразование:

s(t) dt « (1/jw) S(w).

Это выражение в правой части имеет особую точку при w = 0 и, соответственно, весовой дельта-импульс на нулевой частоте. Оператор интегрирования в частотной области (1/jw) при w > 1 ослабляет в амплитудном спектре высокие частоты, а при 0 < w <1 усиливает низкие. Фазовый спектр сигнала смещается на -900 для положительных частот и на 900 для отрицательных.

Наиболее простыми и распространенными на практике алгоритмами интегрирования являются цифровые аналоги формул трапеций, прямоугольников и Симпсона.

Алгоритм интегрирования по формуле трапеций при нулевых начальных условиях:

yk+1 = yk +(sk+1 +sk )/2. (4.2.1)

Рис. 4.2.1. Частотные характеристики фильтров

Принимая sk = exp(jwt) и yk = H(w) exp(jwt), подставляем сигналы в (4.2.1) при tk = kDt, Dt = 1 и решаем относительно H(w). Получаем:

H(w) = cos(w/2)/[2j sin(w/2)].

Частотная характеристика фильтра (в логарифмическом масштабе), а также фильтров интегрирования по другим формулам, приведена на рис. 4.2.1.

В связи с накоплением результатов по всему предыдущему циклу суммирования и большим диапазоном значений модуля АЧХ фильтра более удобными, представительными и информационными являются частотные функции коэффициентов соответствия фактического интегрирования истинному:

K(w) = H(w)exp(jwt)/[(1/jw)exp(jwt)].

K(w) = cos(w/2)[(w/2)/sin(w/2)]. (4.2.2)

Рис. 4.2.2. Коэффициенты соответствия.

Графики коэффициентов соответствия всех фильтров интегрирования приведены на рис. 4.2.2

Оператор интегрирования по формуле прямоугольников (интерполяционное среднеточечное):

yk+1 = yk +sk+1/2 . (4.2.3)

После аналогичных подстановок сигнала и преобразований получаем:

K(w) = (w/2)/sin(w/2).

При численном интегрировании по формуле Симпсона уравнение фильтра имеет вид:

yk+1 = yk-1 +(sk+1 +4sk +sk-1 )/6. (4.2.4)

Частотный анализ фильтра проведите самостоятельно. Контроль:

K(w) = (2+cos w)/[3 sin(w)/w].

Наиболее простые формулы цифрового интегрирования (трапеций и прямоугольников) ведут себя различным образом в главном частотном диапазоне. Формула прямоугольников завышает результаты на высоких частотах, а формула трапеций - занижает. Эти особенности легко объяснимы. Для одиночной гармоники площадь трапеции по двум последовательным отсчетам всегда меньше, чем площадь с выпуклой дугой гармоники между этими отсчетами, и разница тем больше, чем больше частота. В пределе, для гармоники с частотой Найквиста, отсчеты соответствуют знакочередующемуся ряду (типа 1, -1, 1, -1, ... или любые другие значения в зависимости от амплитуды и начального фазового угла) и при нулевых начальных условиях суммирование двух последовательных отсчетов в формуле (4.2.1) будет давать 0 и накопления результатов не происходит. Интегрирование по площади прямоугольников с отчетом высоты по центральной точке между двумя отсчетами всегда ведет к завышению площади прямоугольника относительно площади, ограниченной выпуклой дугой гармоники.

Формула Симпсона отличается от формул трапеций и прямоугольников более высокой степенью касания единичного значения, что обеспечивает более высокую точность интегрирования в первой половине главного диапазона. Однако на высоких частотах погрешность начинает резко нарастать вплоть до выхода на бесконечность на конце диапазона (полюс в знаменателе передаточной функции рекурсивного фильтра на частоте Найквиста).

Эти особенности интегрирования следует учитывать при обработке данных сложного спектрального состава. Пример интегрирования сигнала и изменения его спектра приведен на рис. 4.2.3.

Рис. 4.2.3.

литература

24. Хемминг Р.В. Цифровые фильтры. – М.: Недра, 1987. – 221 с.

Главный сайт автора ~ Лекции по ЦОС ~ Практикум

О замеченных опечатках, ошибках и предложениях по дополнению: davpro@yandex.ru.

Copyright © 2008-2010 Davydov А.V.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya17:20:05 01 сентября 2019
.
.17:20:04 01 сентября 2019
.
.17:20:04 01 сентября 2019
.
.17:20:03 01 сентября 2019
.
.17:20:02 01 сентября 2019

Смотреть все комментарии (6)
Работы, похожие на Реферат: Тема разностные фильтры и фильтры интегрирования

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(258774)
Комментарии (3487)
Copyright © 2005-2020 BestReferat.ru support@bestreferat.ru реклама на сайте

Рейтинг@Mail.ru