Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: 1 семестр (36 ч лекций, 36 ч практических занятий)

Название: 1 семестр (36 ч лекций, 36 ч практических занятий)
Раздел: Остальные рефераты
Тип: реферат Добавлен 10:04:50 18 сентября 2011 Похожие работы
Просмотров: 41 Комментариев: 11 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Аннотация дисциплины
Высшая математика

1 семестр (36 ч. лекций, 36 ч. практических занятий)

Общая трудоемкость изучения дисциплины составляет 4 зачетных единицы ( 144 час).

Цели и задачи дисциплины

Целями изучения дисциплины являются: формирование в общей системе знаний обучающихся по гуманитарным специальностям основных представлений и понятий фундаментального математического образования, об основных разделах современного математического анализа и основах линейной алгебры, овладение базовыми принципами и приемами дифференциального и интегрального исчисления; выработка навыков решения практических задач.

Задачей изучения дисциплины является: развитие у обучающихся навыков по работе с математическим аппаратом, подготовка их к системному восприятию дальнейших дисциплин из учебного плана, использующих математические методы; получение представлений об основных идеях и методах математического анализа и линейной алгебры и развитие способностей сознательно использовать материал курса, умение разбираться в существующих математических методах и моделях и условиях их применения; демонстрация обучающимся примеров применения методов математического анализа и линейной алгебры в гуманитарных науках.

Основные дидактические единицы (разделы): элементы линейной алгебры и аналитической геометрии, введение в математический анализ, дифференциальное исчисление функций одной переменной, применение дифференциального исчисления для исследования функций и построения их графиков, неопределенный интеграл, определенный интеграл.

В результате изучения дисциплины студент бакалавра должен:

знать: содержание базовых определений и понятий математического анализа и линейной алгебры, основные понятия из теории пределов и производных, методы исследования функций на основе этих понятий, понятия дифференциала и интеграла, определение и особенности определенного и несобственного интеграла, свойства матриц и соответствующих определителей, их взаимосвязь с системами линейных уравнений и линейными преобразованиями, основные понятия аналитической геометрии;

уметь: ориентироваться в области математического анализа и линейной алгебры, пользоваться специальной литературой в изучаемой области, вычислять пределы функции и последовательности, находить производные, строить графики непрерывных и разрывных функций, находить интегралы (определенные, неопределенные и несобственные), уметь производить вычисления с матрицами и решать системы линейных уравнений, обосновывать выбор средств, необходимых для решения конкретных задач математического анализа, линейной алгебры и аналитической геометрии, сводить постановки задач на содержательном уровне к формальным и относить их к соответствующим разделам математического анализа, линейной алгебры и аналитической геометрии;

владеть : навыками вычисления пределов функций и последовательностей, нахождения производных, построения графиков непрерывных и разрывных функций, нахождения интегралов (определенных, неопределенных и несобственных), построения линейных геометрических объектов и кривых второго порядка, умением производить вычисления с матрицами и решать системы линейных уравнений.

Виды учебной работы: аудиторные занятия - лекции, практические занятия, самостоятельная работа - изучение теоретического курса, домашние задания, индивидуальные задания.

Изучение дисциплины заканчивается экзаменом.

Аннотация дисциплины
Теория вероятности и математическая статистика

2 семестр (32 ч. лекций, 32 ч. практических занятий)

Общая трудоемкость изучения дисциплины составляет 4 зачетных единицы ( 144 час).

Цели и задачи дисциплины

Целями изучения дисциплины являются: введение студентов в методологию, подходы, математические методы анализа явлений и процессов в условиях неопределенности, формирование в общей системе знаний обучающихся по гуманитарным специальностям профессиональной культуры и специального вероятностного мышления, необходимого для успешной исследовательской и аналитической работы во многих современных областях науки, формирование представлений о математических методах сбора, систематизации, обработки и интерпретации результатов наблюдений для выявления статистических закономерностей.

Задачами изучения дисциплины являются: развитие у обучающихся навыков по работе с математическим аппаратом теории вероятностей, подготовка их к системному восприятию дальнейших дисциплин из учебного плана, использующих методы вероятностно-статистического анализа; получение представлений об основных идеях и методах и развитие способностей сознательно использовать материал курса, умение разбираться в существующих математических методах и моделях и условиях их применения на практике.

Основные дидактические единицы (разделы): теория вероятностей, элементы математической статистики, статистические методы обработки экспериментальных данных.

В результате изучения дисциплины студент бакалавра должен:

знать: содержание основных базовых определений, понятий и математические результаты теории вероятностей на уровне грамотного обучающегося, основные модели и методы теории вероятностей, используемые в современной теории и практике; различные типы данных, выборочный метод, способы описания исследовательских ситуаций на языке математической статистики, наиболее распространенные приемы решения прикладных задач;

уметь: использовать основные методы теоретико-вероятностных исследований в научном анализе реальных проблем, выявлять реальные возможности и ограниченность математических методов теории вероятностей при анализе и решении задач различной природы, пользоваться специальной литературой в изучаемой области; распознавать типичные задачи математической статистики, аналитически и графически описывать вариационные ряды; строить доверительные интервалы для доли, среднего и дисперсии; проверять статистические гипотезы, такие как гипотеза о законах распределения и о параметрах совокупности; решать задачи дисперсионного и регрессионного анализа; давать интерпретацию полученным результатам.

владеть: основными практическими приемами проведения теоретико-вероятностного научного анализа проблем, навыками участия в профессиональных научных и практических дискуссиях по проблематике дисциплины, навыками самостоятельного приобретения новых знаний, а также навыками передачи знаний другим обучающимся; навыками решения типичных задач математической статистики, анализом и представлением эмпирических данных посредством аналитических и графических методов математической статистики.

Виды учебной работы: аудиторные занятия - лекции, практические занятия, самостоятельная работа - изучение теоретического курса, домашние задания, индивидуальные задания, лабораторные работы.

Изучение дисциплины заканчивается экзаменом.


Аннотация рабочей программы

«Математика и математические методы в биологии»

для специальности 020400.62 БИОЛОГИЯ

Общая трудоемкость изучения дисциплины составляет 7 зачетных единиц (252 час).

Цели и задачи дисциплины

Целью изучения дисциплины является получение базовых знаний в области высшей математики.

Задачей изучения дисциплины является: научить использовать терминологию и методы высшей математики в прикладных задачах и применение полученных знаний для освоения курсов профессионального цикла.

Требования к результатам освоения дисциплины: В результате освоения дисциплины формируются следующие компетенции: ОК-6; ПК-19.

Место дисциплины в учебном плане: цикл Б.2, базовая часть

Основные дидактические единицы (разделы): Линейная алгебра и аналитическая геометрия; векторная алгебра; математический анализ; дифференциальные уравнения; дискретная математика; теория вероятностей и математическая статистика; математические методы в биологии.

В результате изучения дисциплины студент должен:

знать: основные понятия и методы математического анализа, линейной алгебры, дискретной математики; гармонический анализ, дифференциальные уравнения; вероятность и статистику; случайные процессы; оценивание и проверку гипотез; математические методы в биологии.

уметь: применять математические методы при решении типовых задач.

владеть: методами математического моделирования биологических процессов.

Виды учебной работы: лекции, практические занятия, самостоятельная работа.

Изучение дисциплины заканчивается экзаменом.


Аннотация дисциплины МАТЕМАТИКА И СТАТИСТИКА

Общая трудоемкость изучения дисциплины составляет 4 зачетные единицы (144 часа).

Цели и задачи дисциплины: Данная дисциплина предназначена для подготовки бакалавров по специальности 031600.62 «реклама и связи с общественностью». Целью изучения дисциплины является сложить у студента целостное представление об основных математических понятиях и методах, о роли и месте математики в сфере их профессиональной деятельности. В результате изучения дисциплины у студента должны сформироваться общекультурные компетенции.

Задачей изучения дисциплины является:

Представление о ряде математических понятий, что даст возможность применение математики в практической деятельности, дать систематическое представление о математических методах исследования.

Основные дидактические единицы: данный курс предполагает изучение трех основных модулей дисциплины: математический анализ, теория вероятностей и статистика.

1. Математический анализ: понятие предела; основы дифференциального исчисления – производная, ее геометрический смысл, производная сложной функции; исследование функций; основы интегрального исчисления – неопределенный интеграл, определенный интеграл, несобственные интегралы.

2. Теория вероятностей: элементы комбинаторики; теория событий, определение вероятности; теоремы сложения и умножения; дискретные и непрерывные случайные величины; нормальный закон распределения.

3. Математическая статистика: статистика и вероятность; выборка и ее представление; статистическое оценивание; интервальные оценки; проверка статистических гипотез.

В результате изучения дисциплины студент должен:

o Знать: основные понятия, методы и приемы математического анализа, теории вероятностей и математической статистики.

o Уметь: использовать в профессиональной деятельности математические методы исследования.

o Владеть: методами математического анализа, навыками составления статистических отчетов.

Виды учебной работы: лекционные, практические занятия и самостоятельная работа. Форма контроля первых двух модулей – контрольная работа, которая включает задания, на проверку тем которые были отведены на самостоятельное изучение. Последний модуль - индивидуальное задание.

Изучение дисциплины заканчивается экзаменом. Оценка выставляется по сумме балов набранных за семестр и полученных непосредственно на экзамене.


Модуль «Математика»

Аннотация рабочей программы учебной дисциплины

«Математический анализ»

Дисциплина Б.2.1.1. «Математический анализ» является базовой частью модуля «Математика» математического и естественнонаучного цикла (блок Б.2) дисциплин подготовки студентов по направлению подготовки 020100 «Химия».

Основные положения дисциплины должны быть использованы в дальнейшем при изучении следующих дисциплин:

– математика – базовая часть математического и естественнонаучного цикла (блок Б.2);

–неорганическая химия, аналитическая химия, органическая химия, физическая химия, высокомолекулярные соединения, химическая технология– базовая (общепрофессиональная) и вариационная часть профессионального цикла (блок Б.3).

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций:

ОК-6 –способность использовать основные законы естественнонаучной дисциплины в профессиональной деятельности, применять методы математического анализа.

ПК-8 –способность владеть методами регистрации и обработки результатов химических экспериментов.

Изучение данной дисциплины базируется на школьной подготовке студентов по математике.

Целью дисциплины «Математический анализ» является: формирование у студентов теоретических знаний и практических навыков решения задач математического моделирования в профессиональных задачах.

В ходе изучения дисциплины «Математический анализ» студенты должны:

иметь представление об основных теоретических положениях математического анализа; о разнообразных формах интерпретаций основных положений;

овладеть математическими методами и моделями, с помощью которых в современных условиях анализируется различная информация;

знать геометрические, механические и финансово-экономические интерпретации основных математических понятий курса; алгоритмы, схемы, методы и рекомендации для решения типовых математически сформулированных задач; приемы употребления математической символики для выражения количественных и качественных отношений объектов; простейшие приемы составления алгоритмов (структурных схем) решения нестандартных математически сформулированных задач; простейшую технику дифференцирования и интегрирования функций (с использованием справочной литературы); приемы исследования на сходимость числовых рядов; описание множества сходимости степенных рядов; приемы вычисления криволинейных интегралов;

уметь использовать полученные знания для осуществления анализа химических задач;

иметь навыки в использовании логических приемов и методов (индуктивном, дедуктивном, от противного), применяемых в теоретическом ядре курса.

Содержание дисциплины охватывает круг вопросов, связанных с изучением следующих разделов:

Функции действительного переменного, предел, непрерывность функции, Производная, дифференциал, исследование функций с помощью производной, неопределенный и определенный интеграл

Качество обучения достигается за счет использования следующих форм учебной работы: лекции, практические занятия (решение задач и интерактивные методы работы - это активное, постоянное взаимодействие между преподавателем и студентом в процессе обучения), самостоятельная работа студента (выполнение индивидуальных домашних заданий), консультации.

Контроль успеваемости. Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости в форме контрольных точек (КТ) и промежуточный контроль в форме зачета и экзамена .

Средства контроля : тесты, контрольные письменные задания.

Преподавание дисциплины ведется на первом и втором курсах (1, 2 семестры, продолжительностью 17 недель) и предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента, консультации.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа

Аннотация рабочей программы учебной дисциплины

«Высшая алгебра»

Дисциплина Б.2.1.3. «Высшая алгебра» является базовой частью модуля «Математика» математического и естественнонаучного цикла (блок Б.2) дисциплин подготовки студентов по направлению подготовки 020100 «Химия».

Основные положения дисциплины должны быть использованы в дальнейшем при изучении следующих дисциплин:

– математика – базовая часть математического и естественнонаучного цикла (блок Б.2);

–неорганическая химия, аналитическая химия, органическая химия, физическая химия, высокомолекулярные соединения, химическая технология– базовая (общепрофессиональная) и вариационная часть профессионального цикла (блок Б.3).

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций:

ОК-6 –способность использовать основные законы естественнонаучной дисциплины в профессиональной деятельности, применять методы математического анализа.

ПК-8 –способность владеть методами регистрации и обработки результатов химических экспериментов.

Изучение данной дисциплины базируется на вузовской подготовке студентов по математическому анализу.

Целью дисциплины «Высшая алгебра» является: формирование у студентов теоретических знаний и практических навыков решения задач аналитической геометрии и линейной алгебры; основ применения аналитической геометрии и линейной алгебры к решению химических задач.

В ходе изучения дисциплины «Высшая алгебра» студенты должны:

иметь представление о матричном способе представления различной информации и об адаптации методов линейной алгебры к решению прикладных задач; об аналитическом способе описания различных геометрических объектов и об адаптации методов аналитической геометрии к решению химических задач;

овладеть математическими методами и моделями, с помощью которых в современных условиях анализируется различная информация;

знать теоретические основы методов линейной алгебры; основные методы решения задач линейной алгебры; теоретические основы методов аналитической геометрии; основные методы решения задач аналитической геометрии;

уметь использовать полученные знания для осуществления анализа прикладных задач;

иметь навыки решения прикладных задач с применением линейной алгебры и аналитической геометрии.

Содержание дисциплины охватывает круг вопросов, связанных с изучением следующих разделов:


Множества чисел; множества комплексных чисел; комбинаторика. Бином Ньютона; полиномы в комплексной и действительной области; матрицы и определители; арифметическое пространство векторов Rn; Линейная зависимость и независимость векторов; система линейных уравнений; линейные пространства; евклидовы пространства; линейные операторы; линейные, билинейные и квадратичные формы; аналитическая геометрия; элементы теории групп.

Качество обучения достигается за счет использования следующих форм учебной работы: лекции, практические занятия (решение задач и интерактивные методы работы - это активное, постоянное взаимодействие между преподавателем и студентом в процессе обучения), самостоятельная работа студента (выполнение индивидуальных домашних заданий), консультации.

Контроль успеваемости. Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости в форме контрольных точек (КТ) и промежуточный контроль в форме экзамена.

Средства контроля : тесты, контрольные письменные задания.

Преподавание дисциплины ведется на первом курсе (2-ой семестр, продолжительностью 18 недель) и предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента, консультации.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа.

.

Аннотация рабочей программы учебной дисциплины

«Дифференциальные уравнения»

Дисциплина Б.2.1.6. «Дифференциальные уравнения» является базовой частью мо-дуля «Математика» математического и естественнонаучного цикла (блок Б.2) дисциплин подготовки студентов по направлению подготовки 020100 «Химия»

Основные положения дисциплины должны быть использованы в дальнейшем при изучении следующих дисциплин:

– математика – базовая часть математического и естественнонаучного цикла (блок Б.2);

–неорганическая химия, аналитическая химия, органическая химия, физическая химия, высокомолекулярные соединения, химическая технология– базовая (общепрофессиональная) и вариационная часть профессионального цикла (блок Б.3).

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций:

ОК-6 –способность использовать основные законы естественнонаучной дисциплины в профессиональной деятельности, применять методы математического анализа.

ПК-8 –способность владеть методами регистрации и обработки результатов химических экспериментов.

Изучение данной дисциплины базируется на вузовской подготовке студентов по математическому анализу, аналитической геометрии и линейной алгебре.

Целью дисциплины «Дифференциальные уравнения» является: формирование у будущих специалистов современных теоретических знаний в области обыкновенных дифференциальных уравнений и практических навыков в решении и исследовании основных типов обыкновенных дифференциальных уравнений, ознакомление студентов с начальными навыками математического моделирования.

В ходе изучения дисциплины «Дифференциальные уравнения» студенты должны:

иметь представление об основных типах дифференциальных уравнений и методах их решения и исследования;

овладеть математическими методами и моделями, с помощью которых в современных условиях анализируется различная информация;

знать методы интегрирования и исследования дифференциальных уравнений первого порядка и их систем, уравнений, допускающих понижение порядка, методы решения линейных дифференциальных уравнений, решения систем дифференциальных уравнений, методы решения и исследования задач для основных уравнений математической химии, методы интегрирования дифференциальных уравнений с запаздывающим аргументом для дальнейшего их применения при решении практических задач математическими методами;


уметь исследовать устойчивость решения дифференциальных уравнений и систем, составляющих основу математических моделей различных теоретических и прикладных задач; составить дифференциальное уравнение и поставить задачу для описания математической модели химического процесса; решать дифференциальные уравнения с частными производными первого порядка; проводить классификацию линейных уравнений в частных производных второго порядка от двух независимых переменных; исследовать вопрос существования и единственности решения задачи Коши для обыкновенных дифференциальных уравнений, основных краевых задач для гиперболических, параболических и эллиптических уравнений в частных производных второго порядка; применять метод Фурье для решения смешанных задач для основных уравнений;

иметь навыки составления дифференциальных уравнений и постановки задачу для описания математической модели химического процесса.

Содержание дисциплины охватывает круг вопросов, связанных с изучением следующих разделов:

Понятие обыкновенного дифференциального уравнения. Уравнения первого порядка. Уравнения высших порядков. Системы обыкновенных дифференциальных уравнений. Теория устойчивости. Краевые задачи для линейных уравнений второго порядка. Численные методы решения дифференциальных уравнений. Уравнения в частных производных первого порядка.

Качество обучения достигается за счет использования следующих форм учебной работы: лекции, практические занятия (решение задач и интерактивные методы работы - это активное, постоянное взаимодействие между преподавателем и студентом в процессе обучения), самостоятельная работа студента (выполнение индивидуальных домашних заданий), консультации.

Контроль успеваемости. Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости в форме контрольных точек (КТ) и промежуточный контроль в форме экзамена .

Средства контроля : тесты, контрольные письменные задания.

Преподавание дисциплины ведется на втором курсе (1-ый семестр, продолжительностью 18 недель) и предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента, консультации.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа.


Аннотация рабочей программы учебной дисциплины

«Математика»

Дисциплина Б.2.1.«Математика» является базовой частью математического и естественнонаучного цикла (блок Б.2) дисциплин подготовки студентов по направлению 022000 «Экология и природопользование».

Основные положения дисциплины должны быть использованы в дальнейшем при изучении следующих дисциплин:

– физика, информатика, химия – базовая часть математического и естественнонаучного цикла (блок Б.2);

–модули: учения о сферах земли, основы природопользования, прикладная экология – базовая (общепрофессиональная) и вариационная часть профессионального цикла (блок Б.3).

Дисциплина нацелена на формирование общекультурных и профессиональных компетенций:

ОК-6 –уметь работать с информацией из различных источников, для решения профессиональных задач.

ПК-1 – обладать базовыми знаниями в области фундаментальных разделов математики в объеме, необходимом для владения математическим аппаратом экологических наук, для обработки информации и анализа данных по экологии и природопользованию.

Изучение данной дисциплины базируется на школьной подготовке студентов по математике.

Целью дисциплины «Математика» является: формирование у студентов теоретических знаний и практических навыков решения задач математического моделирования в профессиональных задачах.

В ходе изучения дисциплины «Математика» студенты должны:

иметь представление об основных теоретических положениях математического анализа; о разнообразных формах интерпретаций основных положений;

овладеть математическими методами и моделями, с помощью которых в современных условиях анализируется различная информация;

знать основные понятия и методы математического анализа, линейной алгебры, дискретной математики; гармонический анализ, дифференциальные уравнения; вероятность и статистику; случайные процессы; оценивание и проверку гипотез; математические методы в экологии.

уметь использовать полученные знания для осуществления анализа профессиональных задач;

иметь навыки в использовании логических приемов и методов применяемых в теоретическом ядре курса.

Содержание дисциплины охватывает круг вопросов, связанных с изучением следующих разделов:

Линейная алгебра и аналитическая геометрия; векторная алгебра; математический анализ; дифференциальные уравнения; дискретная математика; теория вероятностей и математическая статистика; математические методы в биологии.

Качество обучения достигается за счет использования следующих форм учебной работы: лекции, практические занятия (решение задач и интерактивные методы работы - это активное, постоянное взаимодействие между преподавателем и студентом в процессе обучения), самостоятельная работа студента (выполнение индивидуальных домашних заданий), консультации.

Контроль успеваемости. Программой дисциплины предусмотрены следующие виды контроля: текущий контроль успеваемости в форме контрольных точек (КТ) и промежуточный контроль в форме зачета и экзамена .

Средства контроля : тесты, контрольные письменные задания.

Преподавание дисциплины ведется на первом и втором курсах (1, 2 семестры, продолжительностью 18 недель) и предусматривает следующие формы организации учебного процесса: лекции, практические занятия, самостоятельная работа студента, консультации.

Общая трудоемкость освоения дисциплины составляет ___ зачетные единицы, ___ часа

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya16:56:03 01 сентября 2019
.
.16:56:02 01 сентября 2019
.
.16:56:01 01 сентября 2019
.
.16:56:00 01 сентября 2019
.
.16:56:00 01 сентября 2019

Смотреть все комментарии (11)
Работы, похожие на Реферат: 1 семестр (36 ч лекций, 36 ч практических занятий)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(258728)
Комментарии (3484)
Copyright © 2005-2020 BestReferat.ru support@bestreferat.ru реклама на сайте

Рейтинг@Mail.ru