Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Учебное пособие: Методические указания к решению задач по атомной физике для студентов физического факультета Ростов-на-Дону

Название: Методические указания к решению задач по атомной физике для студентов физического факультета Ростов-на-Дону
Раздел: Остальные рефераты
Тип: учебное пособие Добавлен 02:34:19 04 сентября 2011 Похожие работы
Просмотров: 2470 Комментариев: 11 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования

«РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

«КВАНТОВЫЕ СВОЙСТВА СВЕТА»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к решению задач по атомной физике

для студентов физического факультета

Ростов-на-Дону

2006

Методические указания разработаны кандидатом физико-математических наук, ассистентом кафедры нанотехнологии И.Н. Леонтьевым и кандидатом физико-математических наук, зав. кафедрой нанотехнологии Ю.И. Юзюком.

Ответственный редактор канд. физ.-мат. наук И.Н. Леонтьев

Компьютерный набор и верстка инженер Г.А. Колесников

Печатается в соответствии с решением кафедры общей физики физического факультета РГУ, протокол № 21 от 25 апреля 2006 г.

ОСНОВНЫЕ ФОРМУЛЫ

· Закон Стефана - Больцмана

,

где R е – энергетическая светимость черного тела; Т – термодинамическая температура; s - постоянная Стефана – Больцмана.

· Энергетическая светимость серого тела в классическом приближении

,

где e – коэффициент теплового излучения (степень черноты) серого тела.

· Закон смещения Вина

,

где l m – длина волны, на которую приходится максимум энергии излучения; b -постоянная закона смещения Вина.

· Энергия фотона

или ,

где h – постоянная Планка; ; n – частота излучения; w – циклическая частота; l – длина волны.

· Формула Планка для спектральной плотности энергии

,

где – спектральная плотность энергетической светимости черного тела; w – круговая частота; с – скорость света в вакууме; к – постоянная Больцмана; – постоянная Планка.

· Формула Эйнштейна для фотоэффекта

,

где e – энергия фотона, падающего на поверхность металла; А – работа выхода электрона из металла; Е max – максимальная кинетическая энергия фотоэлектрона.

· Коротковолновая граница lmin сплошного рентгеновского спектра

,

где – постоянная Планка; с – скорость света в вакууме; е – заряд электрона; U – разность потенциалов, приложенная к рентгеновской трубке.

· Давление производимое светом при нормальном падении,

или ,

где Ee – облученность поверхности; с – скорость электромагнитного излучения в вакууме; w – объемная плотность энергии излучения; r – коэффициент отражения.

· Изменение длины волны Dl фотона при рассеянии его на свободном электроне на угол q

,

где m – масса покоя электрона отдачи; с – скорость света в вакууме; – комптоновская длина волны.

Задача №1

Исследование спектра излучения Солнца показывает, что максимум спектральной плотности энергетической светимости соответствует длине волны l = 500 нм. Принимая Солнце за черное тело, определить: 1) энергетическую светимость Солнца; 2) поток энергии Фе , излучаемый Солнцем; 3) массу m электромагнитных волн (всех длин), излучаемых Солнцем за 1 с.

Энергетическая светимость R черного тела выражается формулой Стефана – Больцмана

.

Температура излучающей поверхности может быть определена из закона смещения Вина

.

Выразив отсюда температуру Т и подставив ее в закон Стефана – Больцмана, получим

.

Произведя вычисления по этой формуле, получим Re = 64 МВт/м2 .

Поток энергии Фе , излучаемый Солнцем, равен произведению энергетической светимости R на площадь поверхности солнца S

,

где RC = радиус Солнца. Подставляя в последнюю формулу численные значения, получим Фе = 3,9×1026 Вт.

Массу электромагнитных волн (всех длин), излучаемых Солнцем за время D t , определим, применив закон пропорциональности массы и энергии

.

С другой стороны, энергия электромагнитных волн, излучаемых за время D t , равна произведению потока энергии Фе (мощности излучения) на время

.

Отсюда

.

Произведя вычисления, получим m = 4,3×109 кг.

Задача №2

Вин предложил следующую формулу для распределения энергии в спектре теплового излучения:

,

где а = 7,64 × 10-12 К × с. Найти с помощью этой формулы при Т = 2000 К: а) наиболее вероятную частоту w вер длину l вер излучения; б) средние значения частоты < w >.

Наиболее вероятную частоту излучения ω найдем из условия

.

Отсюда

.

Удовлетворяющие этому уравнению значения ω = 0 , ω = ∞ соответствуют минимумам функции . Значение w, обращающее в нуль выражение, стоящее в скобках, представляет собой наиболее вероятную частоту излучения wвер

.

Откуда =7,8×1014 с-1 .

2. Поскольку связь функций и имеет следующий вид:

,

то в нашем случае

.

Наиболее вероятную длину волны излучения найдем из условия

.

Тогда

.

Удовлетворяющие этому уравнению значения λ = 0 , λ = ∞ соответствуют минимумам функции . Значение λ, обращающее в нуль выражение, стоящее в скобках, представляет собой наиболее вероятную частоту излучения λ вер .

=> =2,40 мкм.

Среднее значение частоты излучения определяется следующим выражением

.

Интегралы, стоящие как в числителе последней дроби, так и в знаменателе сводятся к следующему табличному интегралу:

.

Тогда

=1,05×1014 с-1 .

Задача №3

Преобразовать формулу Планка к виду, соответствующему распределению: а) по линейным частотам; б) по длинам волн.

Энергетическая светимость абсолютно черного тела определяется следующим выражением:

, (1)

где – функция спектрального распределения энергии излучения, определяемая формулой Планка

. (2)

Чтобы получить распределение по линейным частотам произведем в (1) замену переменных с учетом того, что

.

Тогда

,

,

отсюда

.

Аналогичным образом поступим, чтобы найти распределение по длинам волн. Поскольку

,

то

,

,

отсюда

.

Задача №4

Получить приближенные выражения формулы Планка при << и >> .

Рассмотрим первый случай, когда << . Отсюда

<< 1.

Тогда мы можем воспользоваться следующим тождеством

,

откуда

.

Подставляя полученное выражение в формулу Планка, получим

.

Полученное выражение представляет собой закон Рэлея – Джинса.

Рассмотрим теперь случай, когда >> . В этом случае единицей в знаменателе формулы Планка можно пренебречь т.к.

>> 1.

Отсюда

.

Полученное выражение совпадает с законом Вина (см. задачу №2). Здесь

, .

Задача №5

Определить максимальную скорость фотоэлектронов vmax , вырываемых с поверхности серебра: 1) ультрафиолетовым излучением с длиной волны l 1 = 0,155 мкм; 2) g излучением с длиной волны l 2 = 2,47 пм.

Максимальную скорость фотоэлектронов определим из уравнения Эйнштейна для фотоэффекта

. (3)

Энергия фотона вычисляется по формуле

.

Работа выхода электрона для серебра равна А = 4,7 эВ.

Кинетическая энергия фотоэлектрона в зависимости от того, какая скорость ему сообщается, может быть выражена по классической формуле

(4)

или по релятивистской

. (5)

Если энергия фотона e много меньше энергии покоя электрона Е0 , то может быть применена формула (4); если же e сравнима по размеру с Е0 , то вычисление по формуле (4) приводит к грубой ошибке, в этом случае кинетическую энергию фотоэлектрона необходимо вычислять по формуле (5).

Для ультрафиолетового излучения с длиной волны l 1 = 0,155 мкм энергия фотона равна e 1 = 8 эВ, что много меньше энергии покоя электрона (0,511 МэВ). Следовательно, в данном случае формула (4) справедлива, откуда

= 1,08×106 м/c.

В случае g – излучения с длиной волны l 2 = 2,47 пм энергия фотона равна e 1 = 0,502 МэВ, тогда работой выхода электрона (А = 4,7 эВ) можно пренебречь и можно принять, что максимальная кинетическая энергия фотоэлектрона равна энергии фотона. Т.к. в данном случае энергия покоя электрона сопоставима с энергией фотона, то для вычисления скорости фотоэлектрона необходимо воспользоваться релятивистской формулой для кинетической энергии

,

где . Произведя математические преобразования, получим

.

Тогда максимальная скорость фотоэлектронов, вырываемых g – излучением равна

= 226×106 м/c.

Задача №6

До какого потенциала можно зарядить удаленный от других тел цинковый шарик, облучая его ультрафиолетовым излучением с длиной волны l = 200 нм.

При облучении шарика ультрафиолетовым излучением с длиной волны l, из него будут выбиваться электроны с максимальной кинетической энергией Е max , причём электроны будут покидать шарик до тех пор, пока энергия электростатического взаимодействия (притяжения) W не станет равной максимальной кинетической энергии фотоэлектронов Е max ,т. е.

W = Е max .

Максимальную кинетическую энергию фотоэлектронов найдем из уравнения Эйнштейна для фотоэффекта

,

где AZn – работа выхода электрона для цинка. Отсюда

.

Поскольку

,

где е – заряд электрона, j – потенциал шарика, то

.

Отсюда

=2,74 В.

Задача №7

Определить красную границу l кр фотоэффекта для цезия, если при облучении его поверхности фиолетовым светом с длиной волны l = 400 нм максимальная скорость vmax фотоэлектронов равна 0,65 Мм/с..

При облучении светом, длина волны которого l кр соответствует красной границе фотоэффекта, скорость, а следовательно, и кинетическая энергия фотоэлектронов равны нулю. Поэтому уравнение Эйнштейна в этом случае будет иметь вид

или ,

где А Cs – работа выхода электрона из цезия. Отсюда

. (6)

Чтобы получить работу выхода электрона из цезия воспользуемся уравнением Эйнштейна в виде

. (7)

Подставляя (7) в (6), получим

.= 651 нм.

Задача №8

После увеличения напряжения на рентгеновской трубке в h = 2,0 раза первоначальная длина волны l 0 коротковолновой границы сплошного рентгеновского спектра изменилась на D l = 50пм. Найти l 0 .

Коротковолновая граница тормозного излучения сплошного рентгеновского спектра определяется выражением:

,

где V – напряжение на рентгеновской трубке; а – некоторая постоянная, то при увеличении напряжения на рентгеновской трубке длина волны рентгеновского излучения будет уменьшаться. Тогда

и .

Разделив второе равенство на первое, получим

.

Отсюда находим

.

Задача №9

Определить напряжение на рентгеновской трубке, если известно, что зеркальное отражение узкого пучка ее излучения от естественной грани монокристалла NaCl наблюдается при уменьшении угла скольжения вплоть до a = 4,1 ° . Соответствующее межплоскостное расстояние d = 281 пм.

Согласно закону Вульфа – Брэгга

, (8)

где d – межплоскостное расстояние, a – угол дифракции (брэгговский угол или угол, под которым наблюдается максимум отраженного от кристалла рентгеновского пучка), l – длина волны падающего рентгеновского излучения, n – порядок дифракции (в данном случае n = 1).

Коротковолновая граница тормозного излучения сплошного рентгеновского спектра определяется следующим выражением:

,

где V – напряжение на рентгеновской трубке. Подставляя последнее выражение в (8), получим

.

Отсюда

.

Подставляя в последнее выражение численные значения, получим V = 31 кВ.

Задача №10

Узкий пучок рентгеновского излучения с длиной волны λ падает на рассеивающее вещество. Найти λ , если длины волн смещенных составляющих излучения, рассеянного под углами q 1 = 60° и q 2 = 120°, отличаются друг от друга в h = 2,0 раза.

Изменение длины волны фотона при его рассеивании на свободном электроне равно

, (9)

где – комптоновская длина волны электрона. Тогда формула (9) для случаев рассеяния на углы q 1 и q 2 примет соответственно следующий вид:

,

.

По условию задачи

,

отсюда

.

Используя тригонометрическое тождество , получим

.

Отсюда

.

Подставляя в последнее выражение численные значения получим l = 1,2 пм.

Задача №11

Фотон с энергией Е = 0,75 Мэв рассеялся на свободном электроне под углом q = 60 ° . Принимая, что кинетическая энергия и импульс электрона до соударения с фотоном были пренебрежимо малы, определить : а) энергию Е ¢ рассеянного фотона; б) кинетическую энергию электрона отдачи; в) направление его движения.

Энергию рассеянного фотона найдем, воспользовавшись формулой Комптона:

.

Выразив длины волн l¢ и l через энергии Е ¢ и Е соответствующих фотонов, получим

.

Разделив обе части полученного равенства на , получим

. (10)

Отсюда

.

Подставив численные значения величин, получим Е ¢ = 0,43 МэВ.

Кинетическая энергия электрона отдачи Ек , как это следует из закона сохранения энергии, равна разности между энергией падающего фотона Е и энергией рассеянного фотона Е ¢:

МэВ.

Направление движения электрона отдачи можно определить воспользовавшись законом сохранения импульса, согласно которому импульс падающего фотона равен векторной сумме импульсов рассеянного фотона и электрона отдачи :

.

Векторная диаграмма импульсов показана на рис.1. Все векторы проведены из точки О, где находился электрон в момент соударения с фотоном. Угол j определяет направление движения электрона отдачи.

Из треугольника OCD находим

Рис.1

Или

Так как и , то

. (11)

Из (10) следует, что

. (12)

Заменяя в (11) отношение Е/ E ¢ по формуле (12), получим

.

Учитывая, что

и ,

получим

.

Подставив численные значения, получаем , откуда j = 35°

Задача №12

Пучок монохроматического света с длиной волны l = 663 нм падает нормально на плоскую зеркальную поверхность. Поток энергии Фе = 0,6 Вт. Определите силу F давления, испытываемую этой поверхностью, а также число фотонов N , падающих на нее за время D t =5с.

Сила светового давления на поверхность равна произведению светового давления p на площадь S поверхности:

.

Световое давление может быть найдено по формуле

.

Тогда

. (13)

Поскольку произведение облученности поверхности Ее на площадь поверхности S равно потоку Фе энергии излучения, падающего на поверхность, то (13) можно переписать в виде

.

После подстановки численных значений и с учетом того, что r = 1 (поверхность зеркальная), получим F = 4 нН.

Число фотонов, падающих за время D t на поверхность, определяется по формуле

,

где D W – энергия получаемая поверхностью за время D t , – энергия одного фотона. Отсюда

=1019 фотонов.

Задача №13

Параллельный пучок света с длиной волны l = 500 нм падает нормально на зачерненную плоскую поверхность, производя давление p = 10 мкПа. Определить: 1) концентрацию n фотонов в пучке; 2) число n 1 фотонов, падающих на поверхность площадью 1 м2 за время 1с.

Концентрация фотонов в пучке n может быть найдена, как частное от деления объемной плотности энергии w на энергию одного фотона e

. (14)

Из формулы, определяющей давления света

,

выразим w и, подставив в (14), получим

Поскольку энергия одного фотона определяется выражением

,

то

Коэффициент отражения r для зачерненной поверхности равен нулю. Тогда подставляя численные значения, получаем n = 2,52×1013 м-3 .

Число фотонов n 1 , падающих на поверхность площадью 1 м2 за время 1с найдем из соотношения

,

где N – число фотонов, падающих за время D t на поверхность площадью S . Но так как

,

следовательно

.

После подстановки численных значений, получаем = 7,56×1021 м-2 ×с-1 .

Задача №14

Лазер излучает в импульсе длительностью t = 0,13 мс узкий пучок света с энергией Е = 10 Дж. Найти среднее за время t давление такого пучка света, если его сфокусировать в пятнышко диаметром d = 10мкм на поверхности, перпендикулярной пучку, с коэффициентом отражения r = 0,5.

Так как давление света определяется выражением

,

а произведение облученности поверхности Ее на площадь поверхности S равно потоку Фе энергии излучения, падающего на поверхность, то

.

Поток Фе энергии излучения, падающего на поверхность равен

,

тогда с учетом того, что

,

получим

.

Подставляя численные значения, получим р = 5 МПа ~ 50 атм.

ОСНОВНЫЕ ФИЗИЧЕСКИЕ ПОСТОЯННЫЕ

Постоянная Планка

Скорость света в вакууме

с = 2,998×108 м/c

Масса электрона

Заряд электрона

Электрическая постоянная

eo = 8,85×10-12 Ф/м

1/4peo =9×109 м / Ф

Постоянная Стефана - Больцмана

s = 5,67×10-8 Вт/(м2 ×К4 )

Постоянная закона смещения Вина

b = 2,90×10-3 м ×К

Постоянная Больцмана

ЛИТЕРАТУРА

1. Иродов И.Е. Задачи по квантовой физике: Учебное пособие для физ. спец. вузов. – М.: Высшая шк., 1991. – 175с.

2. Иродов И.Е. Квантовая физика. Основные законы: Учебное пособие для вузов. – М.: Лаборатория Базовых Знаний, 2001. – 271с.

3. Трофимова Т.И., Павлова З.Г.: Сборник задач по курсу физики с решениями: Учебное пособие для вузов. Изд. седьмое, стереотипное– М.: Высшая шк., 2006. – 591с.

4. Чертов А.Г, Воробьев А.А. Задачник по физике. Изд. пятое, переработанное и дополненное – М.: Высшая шк., 1988. – 527с.

5. Борн М. Атомная физика. – М.: «Мир», 1970. – 483с.

6. Савельев И.В. Курс общей физики. Т.3 - М.: Наука., 1982. – 304с.

7. Савельев И.В. Сборник вопросов и задач по общей физики. - М.: Наука, 1982. –271с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya16:55:17 01 сентября 2019
.
.16:55:16 01 сентября 2019
.
.16:55:15 01 сентября 2019
.
.16:55:15 01 сентября 2019
.
.16:55:14 01 сентября 2019

Смотреть все комментарии (11)
Работы, похожие на Учебное пособие: Методические указания к решению задач по атомной физике для студентов физического факультета Ростов-на-Дону

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(258798)
Комментарии (3487)
Copyright © 2005-2020 BestReferat.ru support@bestreferat.ru реклама на сайте

Рейтинг@Mail.ru