Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Автоматизация процесса производства муки

Название: Автоматизация процесса производства муки
Раздел: Рефераты по культуре и искусству
Тип: реферат Добавлен 13:08:09 23 июня 2011 Похожие работы
Просмотров: 513 Комментариев: 12 Оценило: 3 человек Средний балл: 4.3 Оценка: неизвестно     Скачать

Реферат

В курсовой работе на тему «Автоматизация процесса производства муки» выполнено описание технологической схемы производства, выбор параметров регулирования и средств автоматики.

Пояснительная записка содержит 21 страницу текста и 1 таблицу.

Содержание

Введение…………………………………………………………………………..4

1. Описание технологического процесса производства муки………………………………………………………………………………..7

2. Выбор параметров контроля, регулирования и сигнализации…...........10

3. Выбор приборов и средств регулирования………………………...........11

3.1 Датчик скорости……………………………………………………………11

3.2 Датчик уровня……………………………………………………………..13

3.3 Датчик температуры………………………………………………………15

3.4 Датчик массы………………………………………………………………16

3.5 Датчик расхода………………………..…………………………………..18

Заключение……………………………………………………………………….19

Библиографический список……….…………………………………………….20

Введение

Производства муки известно человеку с незапамятных времен, на их основе готовят разнообразные хлебобулочные и кондитерские изделия и кулинарные блюда. Теория и практика технологии муки и крупы постоянно развиваются. Во-первых, переработка зерна в муку принципиальная необходимость. Во-вторых, для измельчения зерна необходимы затраты значительного количества энергии. Поэтому мельница всегда была объектом технической мысли, техника и технология помола постоянно развивались и совершенствовались. Мельница намного раньше других производств приобрела облик промышленного предприятия. В России водяные и ветряные мельницы появились уже в девятом веке, в двенадцатом веке они были повсюду. В 1803 году в одной только Московской губернии было 656 водяных мельниц. Первая мельница с паровым двигателем была построена в Лондоне в 1785году, а в России - в 1818году, в селе Воротынец Нижегородской губернии - раньше, чем в остальных европейских странах. Паровая машина Черепановых мощностью около 4 лошадиных сил (около 3 кВт), созданная в 1824 году, также работала на жерновой мельнице производственной мощностью 1,5 тонн в сутки. В 1892 году в 56 губерниях европейской части России работало свыше 800 крупных паровых мельниц. На мельницах широко применяли различные двигатели внутреннего сгорания. В 1914 году в Санкт-Петербурге мельница ржаного сеяного помола была переведена на электропривод и стала первым электрифицированным предприятием России. Даже на небольших зерновых ветряных или водяных мельницах издавна была предусмотрена механизация физически тяжелых операций. Огромную роль в развитии мельницы сыграло изобретение вальцевого станка. В России его впервые применили на мельнице в 1822 году. С тех пор станки стали активно конкурировать с жерновами, а затем на крупных мельницах совершенно вытеснили их. В 1880 году в Поволжье почти все мельницы были вальцовыми, а всего в России таких мельниц было уже 180. Современная мельница представляет собой полностью механизированное предприятие, причем управление процессом и контроль технологических операций в значительной мере осуществляются автоматизированными системами.

Вместе с крупяными предприятиями длительное время существовали мельницы сельскохозяйственного типа. По данным статистики, еще в 1931 году на территории СССР было более 200 000 ветряных и водяных мельниц, которые обеспечивали нужды сельских жителей.

В 19 веке выход муки разных сортов при помоле пшеницы составлял 75-80%. При этом условия конструкции, диктовали производство большого разнообразия сортов муки. Как правило, на каждой мельнице их было не мене 5, а на некоторых даже 12 сортов.

Такое положение около 10 лет сохранялось и после 1917 года в новой РСФСР, а затем и в бывшем СССР. Качество муки на различных мельницах значительно отличалось. В 1927 году в РСФСР и УССР впервые введены единые стандарты на муку. Действующий в настоящее время стандарт утвержден в 1988 году. Во второй половине 19 века в России происходил бурный рост промышленности, быстро развивалось и мукомолье: только в период с 1860 по 1896 годы было построено более 800 товарных мельниц. Опираясь на прочный экономический фундамент, Россия экспортировала не только зерно, но и муку, которая отличалась высоким качеством и заслуженно пользовалась повышенным спросом в западных странах.

Строительство и эксплуатация мельниц требовали литературного обеспечения. Инженерное руководство по этому вопросу было опубликовано уже в 1812 году В. Левшиным. В дальнейшем такая техническая литература появляется достаточно регулярно. Д.И. Менделеев в своей «Технологии» большой раздел посвятил мукомольному производству.

В 1876 году первый инженер - мукомол и профессор Санкт - Петербургского технологического института П.А. Афанасьев опубликовал «Курс мукомольных мельниц»; в 1884 году его ученик профессор К.А. Зворыкин издал «Курс по мукомольному производству». Эстафету от этих ученых принял профессор П.А.Козьмин, издавший в 1912 году учебник «Мукомольное производство».

Активно велась и подготовка специалистов. Первые технические школы в России были организованны еще при Екатерине Второй, в 1782 году насчитывалось 8 таких школ, в 1786 - уже 165 школ. За период с1876 по1917 годы диплом инженера имели более 100 мукомолов. Современные мельницы отвечают всем инженерным требованиям. Сложный многофакторный технологический процесс, насыщенность предприятий технологическим и вспомогательным оборудованием, автоматизированными системами контроля и управления предъявляют повышенные требования к профессиональным знаниям, организационной способности и общему культурному и интеллектуальному уровню инженеров - технологов.

1. Описание технологического процесса производства муки.

Предварительно очищенное зерно подают из элеватора на мукомольный завод цепными конвейерами 1 и загружают в силосы 2. Силосы оборудованы датчиками верхнего и нижнего уровней, которые связаны с центральным пунктом управления. Зерно из каждого силоса выпускают через самотечные трубы, снабженные электропневматическими регуляторами пото¬ка зерна 3. С помощью регуляторов и винтового конвейера 4 в соответствии с задан¬ной рецептурой и производительностью формируют помольные партии зерна.

Каждый поток зерна проходит магнитные сепараторы 5, подогреватель зерна 6 (в холодное время года) и весовой автоматический дозатор 7. Далее зерно подвергают многостадийной очистке от примесей. В зерноочистительном сепараторе 8 отделяют крупные, мелкие и легкие примеси. В камнеотделительной машине 9 выделяют ми¬неральные примеси. Затем зерно очищается в дисковых триерах: куколеотборнике 10 и овсюгоотборнике 11, а также в магнитном сепараторе. Наружную поверхность зерна очищают в вертикальной обоечной машине 12, а с помощью воздушного сепа¬ратора 13 отделяют аспирационные относы.

Далее зерно через магнитный сепаратор попадает в машину мокрого шелушения 14 и после гидрообработки системой винтовых конвейеров 15 и 17 зерно распределя¬ется по силосам 18 для отволаживания. Силосы оборудованы датчиками уровня зер¬на, которые связаны с центральным пунктом управления. Система распределения зерна по отлежным силосам обеспечивает необходимые режимы отволаживания с различной продолжительностью и делением потоков в зависимости от стекловидности и исходной влажности зерна. После основного увлажнения и отволаживания пре¬дусмотрена возможность повторения этих операций через увлажнительный аппарат 16 и винтовой конвейер 17.

После отволаживания зерно через регулятор расхода, винтовой конвейер 19 и маг¬нитный аппарат поступает в обоечную машину 20 для обработки поверхности. Из этой машины зерно через магнитный аппарат попадает в энтолейтор-стерилизатор 21, а затем в воздушный сепаратор 22 для выделения легких примесей. Далее через магнитный ап¬парат его подают в увлажнительный аппарат 23 и бункер 24 для кратковременного отволаживания. Затем зерно взвешивают на автоматическом весовом дозаторе 25 и через магнитный аппарат направляют на измельчение в первую драную систему.

В каждую драную систему входят вальцовые станки 26, рассевы драных систем 27, рассевы сортировочные 28 и ситовеечные машины 29. Сортирование продуктов измельчения драных систем осуществляют последовательно в два этапа с получени¬ем на первом этапе крупной и частично средней крупок, а на втором — средней и мелкой крупок, дунстов и муки. В ситовеечных машинах 29 обогащают крупки и дунсты /, // и III драных систем и крупку шлифовочного процесса.

Обработке в шлифовальных вальцовых станках 30 подвергают крупную и сред¬нюю крупку I, // и III драных систем после ее обогащения в ситовеечных машинах 29. Верхние сходы с сит рассевов III и IV драных систем направляют в бичевые вымольные машины 37, проход последних обрабатывают в центрифугалах 38. В раз¬мольном процессе применяют двухэтапное измельчение. После вальцовых станков 30 и 33 установлены деташеры 31 и 35 для разрушения конгломератов промежуточ¬ных продуктов измельчения зерна и энтолейторы 34 для стерилизации этих продук¬тов путем ударных воздействий.

В рассевах 32, 36 и 39 из продуктов измельчения высевают муку, которая посту¬пает в винтовой конвейер 40. Из него муку подают в рассевы 41 на контроль, чтобы обеспечить отделение посторонних частиц и требуемую крупность помола. Далее муку через магнитный аппарат, энтолейтор 42 и весовой дозатор 43 распределяют в функциональные силосы 44. Из них обеспечивается бестарный отпуск готовой муки на автомобильный и железнодорожный транспорт либо с помощью весовыбойного устройства 45 муку фасуют в мешки, которые конвейером 46 также передают на транспорт для отгрузки на предприятия-потребители муки. Перед упаковыванием в потребительскую тару муку предварительно просеивают на рассеве 47, упаковы¬вают в бумажные пакеты на фасовочной машине 48. Пакеты с мукой группируют в блоки, которые заворачивают в полимерную пленку на машине для групповой упа¬ковки 49. Полученные блоки из пакетов с мукой передают на транспортирование в торговую сеть.

2. Выбор параметров контроля, регулирования и сигнализации.

Предварительно очищенное зерно подают из элеватора на мукомольный завод цепными конвейерами 1, которые регулируются датчиком скорости и загружают в силосы 2. Силосы оборудованы датчиками верхнего и нижнего уровней, которые связаны с центральным пунктом управления. Зерно из каждого силоса выпускают через самотечные трубы, снабженные электропневматическими регуляторами пото¬ка зерна 3, которые также контролируются датчиком скорости. С помощью регуляторов и винтового конвейера 4, регулируется датчиком скорости, в соответствии с задан¬ной рецептурой и производительностью формируют помольные партии зерна.

Каждый поток зерна проходит магнитные сепараторы 5, подогреватель зерна 6 (в холодное время года) и весовой автоматический дозатор 7. Далее зерно подвергают многостадийной очистке от примесей. В зерноочистительном сепараторе 8 отделяют крупные, мелкие и легкие примеси. В камнеотделительной машине 9 выделяют ми¬неральные примеси. Затем зерно очищается в дисковых триерах: куколеотборнике 10 и овсюгоотборнике 11, а также в магнитном сепараторе.

Магнитный сепаратор 5, зерноочистительный сепаратор 8, камнеотделительная машина 9 и куколеотборник 10 контролируются датчиками, которые характеризуют качество продукции или сырья. Подогреватель зерна 6 и весовой автоматический дозатор 7 контролируются датчиками температуры и массы соответственно.

3. Выбор приборов и средств регулирования.

3.1 Датчик скорости

Сигнализатор движения радиоволновый СДР101П (бесконтактный датчик скорости) предназначен для непрерывного контроля (сигнализации) линейного перемещения твердых (сыпучих) сред на лентах транспортеров, перемещения ковшей норий и других подобных механизмов, обнаружения движения потока продукта в самотечном, аэрозольном и пневматическом транспорте, а также сигнализации попадания продукта в воздухопроводы, наличия продукта на конвеерной ленте. Сигнализатор движения может быть использован для своевременного отключения механизмов при их холостой (без продукта) работе в целях экономии электроэнергии.

Основные функции:

- восприятие радиальной, по отношению к направлению излучения, составляющей скорости движения продукта, механизмов или их агрегатов;

- выдача релейного сигнала, соответствующего наличию или отсутствию движения, с задержкой времени включения (выключения);

- задание задержки времени включения и выключения коммутационного элемента относительно момента фиксации наличия (отсутствия) движения;

- световая индикация, отображающая режим работы.

Принцип действия.

Размещенный в приборе передатчик излучает радиоволну с фиксированной частотой в направлении поверхности контролируемого объекта. Частота отраженного от этой поверхности сигнала отличается от излученной, если поверхность движется в пространстве. В результате сложения и детектирования отраженного и излученного сигналов в приемнике выделяется сигнал разностной частоты, пропорциональный линейной скорости движения.

Достоинства:

- Отсутствие контакта с контролируемым продуктом.

- Простота и надежность прибора.

- Современная элементная база.

- Малые габаритные размеры и масса.

Технические данные:

Напряжение питания

+15 ... 27 В или 15 ... 25 В, 50 Гц

Потребляемая мощность, не более:

0,8 В•А

Диапазон контролируемых скоростей перемещения продукта

0,03 ... 3 м/с

Максимальное расстояние до объекта

0,5 м

Диапазон установки задержки времени включения и выключения коммутационного элемента

от 1 до 120 с

Выходной релейный сигнал:

коммутационная функция переключающий контакт электрическая нагрузка, не более; на переменном токе 0,25 А, 60 В, 0,3 В•А на постоянном токе 0,25 А, 60 В, 0,3 Вт

Условия эксплуатации:

температура окружающей среды -30 °С ... +50 °С относительная влажность до 95% (при 35 °С) вибрационные нагрузки 5 ... 80 Гц, 1 g

Степень защиты обеспечиваемая оболочкой IP65 IP65

3.2 Датчик уровня.

Сигнализатор уровня СУ200И предназначен для контроля предельного уровня воды, щелочей, кислот, нефти и нефтепродуктов, зерна и продуктов его размола, цемента, извести, песка, угля, угольной пыли, а также других жидких и сыпучих сред, в том числе в емкостях, находящихся как под атмосферным, так и под избыточным давлением. Сигнализатор уровня СУ200И в комплекте с двумя датчиками уровня обеспечивает контроль предельного уровня в двух точках.

Принцип действия основан на преобразовании изменения электрической емкости чувствительного элемента (ЧЭ) датчика, вызванного изменением уровня контролируемой среды, в выходной сигнал постоянного тока. Этот сигнал, в свою очередь, используется для управления срабатыванием выходного реле.

Исполнения приборов

Вторичный преобразователь имеет различные исполнения по питанию и организации выходного сигнала:

- Сигнализатор уровня СУ200МАИ предназначен для питания от сети 220 В, 50 Гц. Имеет два независимых канала сигнализации (по каждому из которых предусмотрено отдельное выходное реле).

- Сигнализатор уровня СУ200МБИ предназначен для питания от сети +24 В. Выполняет функции аналогичные СУ 200МАИ.

- Сигнализатор уровня СУ 200ЛАИ предназначен для поддержания уровня в заданных пределах, питание от сети 220 В, 50 Гц. Два датчика работают на одно выходное реле.

- Сигнализатор уровня СУ 200ЛБИ предназначен для поддержания уровня в заданных пределах, питание от сети +24 В. Выполняет функции аналогичные СУ 200ЛАИ.

В зависимости от типа контролируемой среды и условий измерений могут применятся различные варианты исполнения датчиков уровня ЕС: конструкция, материал и длина ЧЭ, тип присоединительного элемента, термостойкое исполнение.

Достоинства:

- К одному вторичному преобразователю может подключаться до двух датчиков уровня.

- Предусмотрена регулировка времени задержки срабатывания выходных реле.

- Сигнализатор уровня СУ200И обеспечивает возможность инвертирования алгоритма работы выходных реле.

- Сигнализатор уровня СУ200И обеспечивает самодиагностику, выдачу аварийного сигнала и зажигание индикатора “Авария” при неисправности линии связи с датчиком.

- Сигнализатор уровня СУ 200И имеет аварийное реле.

- Гальваническая развязка выходных цепей с силовыми цепями.

- Обеспечение взрывозащиты уровня “ia”.

3.3 Датчик температуры.

Автоматизированная система контроля температуры АСКТ-01 предназначена для измерения температуры зерна в силосах по всей высоте силоса и подачи аварийно-предупредительной сигнализации в случае превышения температурой зерна установленного предельного значения.

Достоинства:

- прогнозирование самосогревания продукта;

- полная автоматизация;

- высокая надежность;

- стабильность и точность измерений;

- низкие затраты на кабельную продукцию;

3.4 Датчик массы.

Микросим-06, мод. М0600, М0601.

Для измерения и преобразования сигналов весоизмерительных тензорезисторных датчиков, вывода полученной информации на встроенное табло индикации в единицах массы с последующей ее передачей через интерфейс к другому оборудованию, используются как комплектующие изделия в весах различного типа, в весоизмерительных устройствах и непосредственно связанных с ними задач управления технологическими процессами на предприятиях промышленности, сельского хозяйства и транспорта. Диапазон измерений входного сигнала, мВ/В, не более -0,05...+2,55;-0,1...+3,1.

Микросим-06КС.

Назначение и функциональные возможности.

Прибор предназначен для работы в составе конвейерных весов и дозаторов непрерывного действия с переменной

или постоянной скоростью ленты, служит для автоматического измерения и индикации основных параметров работы конвейерных весов:

- счетчика отгруженной массы;

- текущей производительности;

- времени счета;

- линейной плотности;

- скорости конвейера;

Кроме этого, прибор обеспечивает:

- дистанционную передачу значений текущей производительности (или линейной плотности) в виде сигнала постоянного тока от 4 до 20 мА;

- выдачу управляющих сигналов о превышении уставок (количество отгруженной массы и порог производительности /линейной плотности);

- передачу по последовательному каналу RS485 текущих параметров.

Прибор имеет индикатор, клавиатуру управления, дискретные входы/выходы, разъемы:

- для подключения тензодатчика;

- для подключения датчика скорости конвейерной ленты;

- интерфейс RS485 (для подключения компьютера);

- интерфейс MS-bus (для подключения контроллера непрерывного действия).

3.5 Датчик расхода.

Поточный расходомер зерна серии "Шлейф".

Назначение - Непрерывный контроль массового расхода зерна в падающем потоке.

Применение:

- Датчик применяется в системе автоматического увлажнения зерна "Плаун"

- в системах контроля расхода сыпучих материалов.

Основные технические характеристики:

Диапазон измерения расхода зерна

от 3 до 12.5 т / ч

Относительная погрешность измерения расхода зерна

2%

Интерфейс связи с компьютером

RS-485.

Напряжение питания

Однофазная сеть перем. тока напряжением от 100 до 250 В, частотой 50 Гц

Потребляемая мощность

Не более 7 Вт

Класс защиты по ГОСТ 14254

IP65

Габаритные размеры

высота: 680 мм
ширина: 300 мм
глубина 400 мм

Диаметр зернопровода

120 мм

Высота, необходимая для установки датчика

не менее 1200 мм

Масса

14 кг

Износостойкость элементов датчика, по которым течет зерно.

Не менее 3-х лет при непрерывной эксплуатации.

Рабочая температура окружающей среды

-15...+40°С

Заключение

В данном курсовом проекте была произведена автоматизация процесса производства муки.

Был произведен выбор приборов и средств автоматизации на основании новых передовых технологий и стоимости современных средств автоматизации. Автоматизация необходима чтобы контролировать параметры технологического процесса производства муки.

За счет использования автоматизации в производстве повышается эффективность производственного процесса, снижается количество бракованной продукции, повышается качество производимой продукции, повышается безопасность и экономичность.

Библиографический список

1. Благовещенская М.М. Информационные технологии систем управления технологическими процессами. - М: Высшая школа, 2005. – 768 с.

2. Машины и аппараты пищевых производств. В 2 кн.: Учеб. Для вузов/ С.Т. Антипов, И.Т. Кретов, А.Н. Остриков и др.; Под ред. Акад. РАСХН В.А. Панфилова. – М.: Высш. шк., 2001. – 703 с.

3. Петров И.К. Приборы и средства автоматизации для пищевой промышленности. – М.: Легкая и пищевая промышленность, 1981. – 416 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Привет студентам) если возникают трудности с любой работой (от реферата и контрольных до диплома), можете обратиться на FAST-REFERAT.RU , я там обычно заказываю, все качественно и в срок) в любом случае попробуйте, за спрос денег не берут)
Olya03:46:47 27 августа 2019
.
.03:46:46 27 августа 2019
.
.03:46:46 27 августа 2019
.
.03:46:45 27 августа 2019
.
.03:46:44 27 августа 2019

Смотреть все комментарии (12)
Работы, похожие на Реферат: Автоматизация процесса производства муки

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(260256)
Комментарии (3520)
Copyright © 2005-2020 BestReferat.ru support@bestreferat.ru реклама на сайте

Рейтинг@Mail.ru