Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364139
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21319)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8692)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Лабораторная работа: Математическое моделирование работы систем массового обслуживания

Название: Математическое моделирование работы систем массового обслуживания
Раздел: Рефераты по экономико-математическому моделированию
Тип: лабораторная работа Добавлен 10:53:51 16 марта 2011 Похожие работы
Просмотров: 619 Комментариев: 22 Оценило: 2 человек Средний балл: 3.5 Оценка: неизвестно     Скачать

ЛАБОРАТОРНАЯ РАБОТА

Математическое моделирование работы систем массового обслуживания

Задание

Вариант 1. Газозаправочная станция для автомобилей располагает двумя газовыми насосами. В очереди, ведущей к насосам, могут расположиться не более пяти автомашин, включая те, которые обслуживаются. Если уже нет места, прибывающие автомобили уезжают искать другую заправку. Распределение прибывающих автомобилей является пуассоновским с математическим ожиданием 20 автомобилей в час. Время обслуживания клиентов имеет экспоненциальное распределение с математическим ожиданием 6 минут.

На основе расчета функциональных характеристик СМО определить:

– процент автомобилей, которые будут искать другую заправку;

– процент времени, когда используется только один из насосов;

– процент времени использования двух насосов;

– вероятность того, что прибывающий автомобиль найдет свободное место в очереди;

– среднее время пребывания автомобиля на газозаправочной станции.

массовый обслуживание транспорт автомобильный

Функциональные характеристики СМО

Характеристика Описание Значение
l интенсивность входного потока заявок 20
m интенсивность обслуживания 10
относительная нагрузка на систему 2,00000
эфф эффективная интенсивность поступления заявок в систему 13,3333
Lq среднее число заявок в очереди 2,00000
Ls среднее число находящихся в системе заявок 3,73333
Wq средняя продолжительность пребывания заявки в очереди 0,11538
Ws средняя продолжительность пребывания заявки в системе 0,21538
p0 вероятность состояния S0 0,06667
p1 вероятность состояния S1 0,13333
P2 вероятность состояния S2 0,13333
P3 вероятность состояния S3 0,13333
P4 вероятность состояния S4 0,13333
P5 вероятность состояния S5 0,13333
P6 вероятность состояния S6 0,13333
P7 вероятность состояния S7 0,13333

Интерпретация полученных результатов.

– процент автомобилей, которые будут искать другую заправку = pc + m = p7 = 13,33%

– процент времени, когда используется только один из насосов = p1 = 13,33%

– процент времени использования двух насосов = p2 + … +p7 = 80%

– вероятность того, что прибывающий автомобиль найдет свободное место в очереди = 1 – p7 = 86,67%

– среднее время пребывания автомобиля на газозаправочной станции = Ws = 0,21538 ч. = 13 минут

Контрольные вопросы:

1. Из каких основных компонентов состоит СМО?

Системы массового обслуживания (СМО) – это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, которые удовлетворяются с помощью имеющихся в распоряжении системы каналов обслуживания (сервисов).

Основными компонентами СМО являются два потока событий:

1) входной поток заявок (требований на обслуживание), характеризующийся своей интенсивностью l (средним количеством клиентов, поступающих в систему в единицу времени) или средним интервалом времени между их последовательными поступлениями tпост ;

2) выходной поток заявок, описываемый интенсивностью обслуживания m (средним количеством обслуженных заявок в единицу времени) или средней продолжительностью обслуживания tобсл .

Для СМО разомкнутого типа, у которых входной и выходной потоки подчинены распределению Пуассона, в качестве исходных данных для расчета функциональных характеристик используются:

· интенсивность входного потока заявок l;

· интенсивность обслуживания m;

· количеством параллельно работающих однородных сервисов (обслуживающих каналов) с;

· максимальная емкость очереди m;

· мощность источника заявок f.

2. Какие бывают СМО?

Состоянием системы называется число находящихся в данный момент в СМО заявок n. Поступающие заявки могут сразу попасть на обслуживание (если сервис свободен) или ожидать в очереди.

Если максимально допустимое число мест в очереди m конечно, то в СМО могут происходить отказы в предоставлении сервиса (система с отказами). Отклоняются от обслуживания те заявки, в момент прихода которых все места в очереди случайно оказались занятыми или при m = 0 (система без очереди) все каналы обслуживания оказались занятыми. В СМО с неограниченной длиной очереди (m = ¥) пришедшая заявка при невозможности немедленного обслуживания ожидает обслуживания при любой длине очереди и продолжительности времени ожидания.

По способу отбора из очереди заявок для обслуживания различают следующие виды дисциплины очереди:

1) первым пришел – первым обслуживается (FCFS);

2) последним пришел – первым обслуживается (LCFS);

3) случайный отбор заявок (SIRO);

4) ограничено время пребывания заявки в очереди;

5) с приоритетами, при которой некоторые находящиеся в очереди заявки имеют право первоочередного обслуживания (например, срочные работы выполняются раньше обычных).

По числу каналов обслуживания c различают одноканальные и многоканальные СМО. Многоканальные СМО разделяют:

· по характеристикам каналов – на однородные и неоднородные СМО;

· по расположению каналов – на СМО с параллельным и последовательным расположением сервисов.

В некоторых СМО интенсивность входного потока может зависеть от числа заявок, уже находящихся в системе (СМО замкнутого типа). В такой системе конечность очереди является следствием ограниченности мощности источника, создающего заявки на обслуживание. В СМО с источником бесконечной мощности (СМО разомкнутого типа) интенсивность входного потока практически не зависит от состояния системы.

3. Как определить основные функциональные характеристики СМО?

Наиболее употребляемыми функциональными характеристиками стационарных СМО являются следующие:

· pотк – вероятность отказа в обслуживании (средняя доля заявок, получивших отказ в обслуживании):

– для СМО с отказами

;

– для СМО с неограниченной очередью

pотк = 0;

· q – относительная пропускная способность системы (средняя доля обслуженных заявок; вероятность обслуживания)

q = 1 – pотк ;

· – относительная нагрузка на систему

r = l / m;

· эфф – эффективная интенсивность поступления заявок в систему (абсолютная пропускная способность системы; среднее число заявок, обслуживаемых системой в единицу времени)

· Lq – среднее число заявок в очереди (средняя длина очереди):

– для СМО без очереди

Lq = 0;

– для СМО с ограниченной очередью

– для СМО с неограниченной очередью

;

· Ls – среднее число находящихся в системе заявок

· Wq – среднее время (средняя продолжительность) пребывания заявки в очереди

· Ws – среднее время (средняя продолжительность) пребывания заявки в системе

· – среднее количество занятых средств обслуживания

;

· pn – вероятность того, что в системе находится n заявок

– для СМО с отказами

; ;

– для СМО с неограниченной очередью

;

В ходе работы я научилась определять количественные показатели качества функционирования системы массового обслуживания.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Хватит париться. На сайте FAST-REFERAT.RU вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую!
Никита05:58:12 03 ноября 2021
.
.05:58:10 03 ноября 2021
.
.05:58:09 03 ноября 2021
.
.05:58:08 03 ноября 2021
.
.05:58:07 03 ноября 2021

Смотреть все комментарии (22)
Работы, похожие на Лабораторная работа: Математическое моделирование работы систем массового обслуживания

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(294399)
Комментарии (4230)
Copyright © 2005-2024 BestReferat.ru support@bestreferat.ru реклама на сайте

Рейтинг@Mail.ru