Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364141
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62791)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21692)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8693)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Курсовая работа: Проектирование узла цифрового комбинационного устройства

Название: Проектирование узла цифрового комбинационного устройства
Раздел: Рефераты по коммуникации и связи
Тип: курсовая работа Добавлен 00:16:18 21 ноября 2009 Похожие работы
Просмотров: 1388 Комментариев: 8 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать

Содержание

Реферат

1 Получение канонических форм

1.1 Совершенная дизъюнктивная форма

1.2 Совершенная конъюнктивная форма

1.3 Составление схемы СДНФ

1.4 Составление схемы СКНФ

2 Минимизация логической функции методом Квайна

3 Минимизация логической функции методом Квайна - Мак-Класки

4 Минимизация методом карт Вейча

Заключение

Библиографический список


Реферат

Разработка узла цифрового комбинационного устройства. Курсовая работа / ВятГУ, каф. РЭС; рук. Н.А. Краев. - Киров, 2007. ПЗ 18 с., табл.10, источников 2 ,схем 6.

СОВЕРШЕННАЯ ДИЗЪЮНКТИВНАЯ НОРМАЛЬНАЯ ФОРМА, СОВЕРШЕННАЯ КОНЪЮНКТИВНАЯ НОРМАЛЬНАЯ ФОРМА, МИНИМАЛЬНАЯ ДИЗЪЮНКТИВНАЯ НОРМАЛЬНАЯ ФОРМА, МИНИМАЛЬНАЯ КОНЪЮНКТИВНАЯ НОРМАЛЬНАЯ ФОРМА, МЕТОД КВАЙНА, МЕТОД КВАЙНА-МАК-КЛАСКИ, МЕТОД КАРТ ВЕЙЧА, БАЗИСНЫЕ ЭЛЕМЕНТЫ И, ИЛИ, НЕ.

Цель работы - проектирование узла цифрового комбинационного устройства.

Составление модели проектируемого устройства с помощью программы ElectronicsWorkbench.

Научная новизна отсутствует.

В результате получили канонические формы представления логической функций, осуществлена минимизация методами Квайна, Квайна-Мак- Класки и карт Вейча, был спроектирован узел цифрового комбинационного устройства. Расчеты были подтверждены моделированием в программе ElectronicsWorkbench. Данная работа может использоваться в качестве пособия, как пример, при изучении методов минимизации логических функций.


1 . Получение канонических форм

Логическая функция задана следующей таблицей истинности:

Таблица 1

Х1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Х2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Х3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Х4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
F(Х) 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0

1.1 Совершенная дизъюнктивная нормальная форма

Чтобы получить совершенную дизъюнктивную нормальную форму (СДНФ) необходимо записать дизъюнкцию наборов аргументов, при которых значение функции равно 1. Наборы представляют собой конъюнкции аргументов, причем, если значение аргумента равно 0, то берется его инверсия:

F(Х)СДНФ = (1 * 2 * 3 * 4 ) + (1 * 2 * 3 *4 ) +(1 * 2 * 3 * 4 ) +(1 * 2 * 3 * 4 ) +(1 * 2 * 3 * 4 ) +(1 * 2 *3 * 4 ) +(1 * 2 * 3 * 4 )

1.2 Совершенная конъюнктивная нормальная форма

Чтобы получить совершенную конъюнктивную нормальную форму (СКНФ), нужно записать конъюнкцию наборов аргументов, при которых значение функции равно 0. Наборы представляют собой дизъюнкции аргументов, причем, если значение аргумента равно 1, берется его инверсия:

F(Х)СКНФ = (1 + 2 + 3 + 4 ) * (1 + 2 + 3 + 4 ) *(1 + 2 + 3 + 4 ) *(1 + 2 + 3 + 4 ) *(1 + 2 + 3 + 4 ) *(1 + 2 + 3 + 4 ) * (1 + 2 + 3 + 4 ) * (1 + 2 + 3 + 4 ) * (1 + 2 + 3 + 4 )

1.3 Составление схемы СДНФ

Составляем схему полученной СДНФ с помощью базисных элементов И, ИЛИ, НЕ:

Рисунок 1 – Схема полученной СДНФ


1.4 Составление схемы СКНФ

Составляем схему полученной СКНФ с помощью базисных элементов И, ИЛИ, НЕ:

Рисунок 2 – Схема полученной СКНФ


2 . Минимизация логической функции методом Квайна

Метод основан на операциях склеивания и поглощения. Операция склеивания производится по правилу: Z(X+X) = Z, где Z произвольная комбинация символов. Операция поглощения выполняется по правилу: М(1+Х)=М. Сначала выполняется операция склеивания, затем операция поглощения. При поглощении из логического выражения удаляются все члены, поглощенные членами, полученными при склеивании.

Находим МДНФ (минимальную дизъюнктивную нормальную форму). Для этого с помощью операции склеивания из СДНФ сначала получаем сокращенную форму:

Здесь и далее индексы в скобках — это порядковые номера минтерм, которые используются для большей наглядности проводимых преобразований.

Выполним операцию попарного склеивания:

Получили сокращенную форму, строим импликантную матрицу:


Таблица 2

Простые импликанты Члены СДНФ
Х Х
Х Х
Х Х
Х Х
Х
Х Х

В левом столбце таблицы 2 записываем члены сокращенной формы (простые импликанты), в верхней строке – члены СДНФ. В минимальную форму войдут те члены сокращенной формы, с помощью которых можно представить все члены СДНФ. Из матрицы видно, что не все члены сокращенной формы войдут в минимальную ДНФ:

Находим МКНФ (минимальную конъюнктивную нормальную форму).

Здесь и далее индексы - это порядковые номера макстермов, которые введены для большей наглядности проводимых преобразований.

Далее выполним операцию попарного склеивания:


Таблица 3 - Импликантная матрица

1 2 3 4 5 6 7 8 9
Х Х
Х Х
Х Х
Х Х
Х Х
Х Х
Х Х
Х Х Х Х

3 Составление схем полученных МДНФ и МКНФ с помощью базисных элементом И, ИЛИ, НЕ

Рисунок 3 – Схема МКНФ


Рисунок 4 – Схема МДНФ


4 Минимизация логической функции методом Квайна–Мак- Класки

Получение МДНФ.

СДНФ в формализованном виде:

Выполним операцию попарного склеивания

Таблица 4

Номер группы Двоичные номера конституент единицы Двоичные номера конституент единицы
0 0000

000*

00*0

1

0001

0100

2 0110

01*1

011*

3

0111

1010

1110

111*

1*10

Таблица 4 – результаты склеивания.


Таблица 5.

0000 0001 0100 0110 0111 1010 1110
000* Х Х
00*0 Х Х
01*1 Х Х
011* Х Х
1010 Х
1110 Х Х

Таблица 5 - Импликантная матрица

Получение МКНФ.

СКНФ в формализованном виде:

Таблица 7 - Результаты повторного склеивания

Номер группы Двоичные номера конституент единицы Двоичные номера конституент единицы Двоичные номера конституент единицы
1

1+1+0+1

0+1+1+1

1+1+0+*

*+1+0+1

0+*+1+1

0+1+*+1

0+1+1+*

0+*+1+*
2

1+1+0+0

1+0+1+0

0+1+1+0

0+1+0+1

0+0+1+1

*+0+1+0

0+*+1+0

0+0+1+*

3 0+0+1+0 0+0+*+0
4 0+0+0+0

F=(1+1+0+*)(*+1+0+1)(0+1+*+1)(*+0+1+0)(0+0+1+*)(0+1+1+*)

(0+0+*+0)( 0+*+1+*)

Таблица 8 — Импликантная матрица

1 2 3 4 5 6 7 8 9
1+1+0+* Х Х
*+1+0+1 Х Х
0+1+*+1 Х Х
0+1+1+* Х Х
*+0+1+0 Х Х
0+0+1+* Х Х
0+0+*+0 Х Х
0+*+1+* Х Х Х Х

5 . Минимизация логической функции методом карт Вейча

Получение МДНФ

Х2
Х1
1 1 Х3
1 1
1 1 1
Х4

Рисунок 1 Карта Вейча для СДНФ

Индекс «1» показывает на номер группы, в каторой обьеденены элементы

Получение МКНФ


Х2
Х1 1 1
1 Х3
1 1 1 1
1 1
Х4

Рисунок 2 Карта Вейча для СКНФ

Заключение

В ходе данной работы был спроектирован узел цифрового комбинационного устройства, реализующий полученные минимальную дизъюнктивную и минимальную конъюнктивную формы заданной логической функции. С помощью базисных элементов И, ИЛИ, НЕ были составлены принципиальные схемы спроектированного узла.


Библиографический список

1. Калабеков Б.А. Основы автоматики и вычислительной техники: Учебник для техникумов связи. /Мамзелев И.А.- М.: Связь, 1980. – 296 с.

2. Горбатов В.А. Основы дискретной математики: Учебное пособие для вузов. – М.: Высш. шк., 1986. – 311 с.

3. Токхейм. Основы цифровой электроники. - Москва: «Мир», 1988. - 391с.

4. http://ptca.narod.ru/lec/lec4 1.html

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Мне с моими работами постоянно помогают на FAST-REFERAT.RU - можете просто зайти узнать стоимость, никто вас ни к чему не обязывает, там впринципе всё могут сделать, вне зависимости от уровня сложности) у меня просто парень электронщик там какой то, тоже там бывает заказывает))
FAST-REFERAT.RU14:04:36 06 декабря 2018
Спасибо, Оксаночка, за совет))) Заказал курсач, отчет по практике, 2 реферата и дипломную на REFERAT.GQ , все сдал на отлично, и нервы не пришлось тратить)
Алексей20:54:28 15 июля 2018Оценка: 5 - Отлично
Я обычно любые готовые работы покупаю на сайте shop-referat.tk , и свои все там же на продажу выставляю, неплохой доп.заработок. А если там не нахожу то уже на referat.gq заказываю и мне быстро делают.
Оксана15:55:35 11 июня 2018Оценка: 5 - Отлично
Хватит париться. На сайте REFERAT.GQ вам сделают любой реферат, курсовую или дипломную. Сам пользуюсь, и вам советую.
Студент23:40:23 09 июня 2018
Как заработать в интернете на halyava.125mb.com
Duke Nukem01:42:44 26 октября 2017

Смотреть все комментарии (8)
Работы, похожие на Курсовая работа: Проектирование узла цифрового комбинационного устройства

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(227289)
Комментарии (3084)
Copyright © 2005-2019 BestReferat.ru bestreferat@gmail.com реклама на сайте

Рейтинг@Mail.ru