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Задача №1 «Планирование производства»

Небольшая фабрика выпускает два типа красок: для внутренних (I) и наружных (Е) работ.
Продукция обоих видов поступает в оптовую продажу. Для производства красок используются два исходных продукта А и В. Максимально возможные суточные запасы этих продуктов составляют 10 и 16 тонн, соответственно. Расходы продуктов А и В на 1 т соответствующих красок приведены в табл. 2.1.

Таблица 2.1
Исходные данные задачи о планировании производства красок
	Исходный продукт
	Расход исходных продуктов 
на 1 т краски, т
	Максимально возможный запас, т

	
	краска Е
	краска І
	

	А
В
	1
2
	2
4
	10
16



Минимальный суточный спрос на краску для внутренних работ составляет 1 т, а для внешних работ 2 т. Суточный спрос на краску i никогда не превышает спроса на краску Е более чем на 1 т. Кроме того, установлено, что спрос на краску I никогда не превышает 2 т в сутки. Оптовые цены одной тонны красок равны: 3000 руб. для краски Е и 2000 руб. для краски I.

Какое количество краски каждого вида должна производить фабрика, чтобы доход от реализации продукции был максимальным?

В нашем случае фабрике необходимо спланировать объем производства красок так, чтобы максимизировать прибыль. Поэтому переменными являются:
Хi — суточный объем производства краски I и Хе — суточный объем производства краски Е.
Суммарная суточная прибыль от производства Xi краски I и Xe краски Е равна 
Z = 3000*Хe+ 2000*Xi 	(2.1)
Целью фабрики является определение среди всех допустимых значений Xi и Xe таких, которые максимизируют суммарную прибыль, т. е, целевую функцию Z.
Перейдем к ограничениям, которые налагаются на Xe и Xi. Объем производства красок не может быть отрицательным, следовательно:
Хt, Хi > 0	(2.2)
Расход исходного продукта для производства обоих видов красок не может превосходить максимально возможный запас данного исходного продукта, следовательно:
Хe + 2Xi <= 10	(2.3)
2Xe + Xi <= 16	(2.4)
Кроме того, ограничения на величину спроса на краски таковы:
Xi-Xe <= 1	(2.5)
Xi < 2 	(2.6)
Таким образом, математическая модель данной задачи имеет следующий вид:
максимизировать 
Z= 300Хe + 2000Xi 
при следующих ограничениях:
Xe+2Xi<= 10
2Xe+Xi<= 16
Xi-Xe<=1
Xi<=2
Xi, Xe>=0
Заметим, что данная модель является линейной, т. к. целевая функция 1-ограничения линейно зависят от переменных.
Вводим данные в таблицу Excel. 



Покажем формулы



Решим данную задачу с помощью команды Сервис - Поиск решения Excel. Средство поиска решений является одной из надстроек Excel. Если в меню Сервис отсутствует команда Поиск решения, то для ее установки необходимо выполнить команду Сервис, Надстройки, Поиск решения.





Для того чтобы получить максимальный доход надо произвести краски І 1 т., а краски Е 6 т. 

Задача №3 «Транспортная задача»

Предположим, что фирма имеет 4 фабрики и 5 центров распределения ее товаров. Фабрики фирмы располагаются в А, Б, В, Г с производственными возможностями 200, 150, 225 и 175 единиц продукции ежедневно, соответственно. Центры распределения товаров фирмы располагаются в 1, 2, 3, 4, 5 с потребностями в 100, 200, 50, 250 и 150 единиц продукции ежедневно, соответственно. Хранение на фабрике единицы продукции, не поставленной в центр распределения, обходится в $0,75 в день, а штраф за просроченную поставку единицы продукции, заказанной потребителем в центре распределения, но там не находящейся, равен $2,5 в день. Стоимость перевозки единицы продукции с фабрик в пункты распределения приведена в табл. 2.6.
Таблица 2.6 - Транспортные расходы
	
	1
	2
	3
	4
	5

	А
	1
	2
	7
	12
	1

	Б
	2
	7
	9
	12
	2

	В
	3
	4
	6
	4
	3

	Г
	7
	3
	11
	3
	5



Необходимо так спланировать перевозки, чтобы минимизировать суммарные транспортные расходы.
Поскольку данная модель сбалансирована (суммарный объем произведенной продукции равен суммарному объему потребностей в ней), то в этой модели не надо учитывать издержки, связанные как со складированием, так и с недопоставками продукции. В противном случае в модель нужно было бы ввести:
В случае перепроизводства — фиктивный пункт распределения, стоимость перевозок единицы продукции в который полагается равной стоимости складирования, а объемы перевозок — объемам складирования излишков продукции на фабриках
В случае дефицита — фиктивную фабрику, стоимость перевозок единицы продукции с которой полагается равной стоимости штрафов за недопоставку продукции, а объемы перевозок — объемам недопоставок продукции в пункты распределения.
Для решения данной задачи построим ее математическую модель. Неизвестными в данной задаче являются объемы перевозок. Пусть Хij — объем перевозок с i-й фабрики в j-й центр распределения. 
Функция цели — это суммарные транспортные расходы, т. е.
Z=cij*xij	(2.22)
Сij— стоимость перевозки единицы продукции с i-й фабрики j-й центр распределения.
Неизвестные в данной задаче должны удовлетворять следующим ограничениям:
объемы перевозок не могут быть отрицательными;
так как модель сбалансирована, то вся продукция должна быть вывезена с фабрик, а потребности всех центров распределения должны быть полностью удовлетворены.
В результате имеем следующую модель:
минимизировать:
Z=cij*xij	(2.23)
при ограничениях:
xij= вj, ,j=[1, 5]	(2.24)
xij=ai, i=[1,4],	(2.25)
xij>=0, i=[1,4], j= [1,5].	(2.26)
где аi — объем производства на i-й фабрике, вi — спрос вj-м центре распределения.

Ввод данных



Формулы



Поиск решения





Минимальная сумма за перевозки груза составляет 2125 грн.

Задача №4 «Назначение на работы»

Четверо рабочих выполнять четыре вида работ. Стоимости выполнения i-м рабочим j-работы приведены в табл. 2.8 

Таблица 2.8 – Стоимость выполнения работ
	
	Работа 1
	Работа 2
	Работа 3
	Работа 4

	Рабочий 1
	1
	2
	7
	12

	Рабочий 2
	2
	7
	9
	12

	Рабочий 3
	3
	4
	6
	4

	Рабочий 4
	7
	3
	11
	3



В этой таблице строки соответствуют рабочим, а столбцы — работам. Необходимо составить план выполнения работ так, чтобы все работы были выполнены, каждый рабочий был загружен только на одной работе, а суммарная стоимость выполнения всех работ была минимальной. Отметим, что данная задача является сбалансированной, т. е. число работ совпадает с числом рабочих. Если задача не сбалансирована, то перед началом решения ее необходимо сбалансировать, введя недостающее число фиктивных строчек или столбцов с достаточно большими штрафными стоимостями работ.
Пусть переменная xij= 1, если i-м рабочим выполняется j-я работа, и хij= 0, если i-м рабочим не выполняется j-я работа. Тогда модель имеет следующий вид:
минимизировать:
Z=cij*xij	(2.27)
при ограничениях:
xij=1, j=[1,4]	(2.28)
 xij=1, I=[1,4]	(2.29)
xij=[0,1], I=[1,4], j=[1,4].	(2.30)
Ввод данных


Формулы



Поиск решения




Минимальная сумма за работы составляет 13 грн.

Задача №2 «Планирование портфеля заказов»

Для получения сплавов А и В используются четыре металла I, II, III и IV, требования к содержанию которых в сплавах А и В приведены в табл. 2.3.

Таблица 2.3 - Требования к содержанию металлов в состава сплавов
	Сплав
	Требования к содержанию металла

	А
	Не более 80% металла I

	
	Не более 30% металла II

	В
	От 40 до 60% металла II

	
	Не менее 30% металла III

	
	Не более 70% металла IV



Характеристики и запасы руд, используемых для производства металлов I, II, III и IV, указаны в табл. 2.4.

Таб. 2.4 
Характеристики и запасы руд в задаче об определении состава сплавов
	Руда
	Максимальный запас, т
	Состав, %
	Цена,
S/т

	
	
	1
	11
	III
	IV
	Другие компоненты
	

	1
	1000
	1
	3
	6
	6
	10
	30

	2
	2000
	2
	4
	6
	3
	10
	40

	3
	3000
	3
	4
	3
	9
	0
	50



Цена 1 т. сплава А равна 200 долларов, а 1 т. сплава В — 210 долларов. Необходимо максимизировать прибыль от продажи сплавов А и В.
Обозначим через х1а, х2а, х3а, х4а и х1в, х2в, х3в, х4в количество I, II, III и IV металлов, используемых для получения сплавов А и В, соответственно. Количество использованной i-я руды обозначим уi I=[1, З].
Тогда математическая модель данной задачи имеет вид:
максимизировать:
Z = 200(х1а+х2а+х3а+х4а) + 210(х1в+х2в+х3в+х4в) –30у1 – 40у2 – 
– 50у3	(2.7)
при ограничениях на состав сплавов (на основании данных из табл.):
х1а <=0,8(х1а+х2а+х3а+х4а)        (2.8)
х2а <= 0,3 (х1а+х2а+х3а+х4а)       (2.9)
х2в <= 0,6(х1в+х2в+х3в+х4в)       (2.10)
х2в>=0,4(х1в+х2в+х3в+х4в)         (2.11)
х3в>=0,3(х1в+х2в+х3в+х4в)         (2.12)
x4 в <=0,7(х1в+х2в+х3в+х4в)       (2.13)
на характеристики и состав руды (на основании данных из табл. 1.4):
x1a+x1 в <=0,01y1+0,02y2+0,03y3          (2.14)
x2a+x2 в <=0,03y1+0,04y2+0,04y3          (2.15)
x3a+x3 в <=0,06y1+0,06y2+0,03y3          (2.16)
x4a+x4 в <=0,06y1+0,03y2+0,09y3           (2.17)
а также на диапазоны использования переменных:
xia>=0, xiв >=0, I=[1,4]          (2.18)
0<=y1<=1000                        (2.19)
0<=y2<=2000                         (2.20)
0<=y3<=3000                        (2.21)

Ввод данных



Формулы



Поиск решения





Сплавы А и В не выгодно производить так, как получаются убытки.
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