Министерство образования Российской Федерации
Волжский университет им. Татищева
Факультет «Информатика и телекоммуникации»
Кафедра «Информатика и системы управления»

УТВЕРЖДАЮ
Проректор по учебной работе
_____________Е.В. Филатова
«_____»____________ 200 г.

МЕТОДИЧЕСКОЕ УКАЗАНИЕ

для проведения лабораторной работы по теме
''Программирование контроллера приоритетных прерываний''
по курсу ''Организация ЭВМ''
для студентов специальностей 220100, 071900

Тольятти

Создание и компиляция программ на ассемблере

Процесс разработки программы на ассемблере состоит из пяти этапов:
1. Создание файла с исходным текстом программы в любом текстовом редакторе. Расширение файла с исходным текстом может быть .asm, или .txt, или .doc.
2. Создание объектного модуля. В среде DOS или NORTON или FAR в командной строке набираете следующую команду:
tasm name.asm
или
tasm.exe name.asm name.obj
name.asm файл с исходным текстом программы. При этом файлы tasm.exe и name.asm должны находится в одном каталоге. После запуска этой команды мы получаем объектный файл с расширением .obj. Если объектный файл не появился, то в программе содержатся ошибки. Перечень ошибок можно посмотреть, отключив панели (ctrl+o или Ctrl+f1 и ctrl+f2).
3. Создание исполнительного файла. В командной строке набираем следующую команду:
tlink name.obj
или
tlink.exe name.obj name exe
При этом файлы tlink.exe и name.obj должны находится в одном каталоге. После запуска этой команды мы получаем запускной файл с расширением .exe. Если запускной файл не появился в этом каталоге, то в данном каталоге не хватает некоторых библиотек. Перечень файлов можно посмотреть, отключив панели (ctrl+o или Ctrl+f1 и ctrl+f2).
4. Тестирование программы. Запустите исполнительный файл.
5. Пошаговая отладка. В командной строке набираем следующую команду:
td name.exe

Структура программы на ассемблере

Model small	;модель программы, или же количество памяти на сегмент
.data		;сегмент данных
;описание переменных
.stack 100h	;сегмент стека
.code		;сегмент данных
;процедуры, макрокоманды
main:	
	mov	ax,@data
	mov	ds,ax	
;основная программа
	mov	ax,4c00h
	int	21h	;выход из программы
end main

Директивы резервирования памяти

Для описания простых типов данных в программе используются специальные директивы резервирования и инициализации данных, которые, по сути, являются указаниями транслятору на выделение определенного объема памяти. Если проводить аналогию с языками высокого уровня, то директивы резервирования и инициализации данных являются определениями переменных.
Машинного эквивалента этим директивам нет; просто транслятор, обрабатывая каждую такую директиву, выделяет необходимое количество байт памяти и при необходимости инициализирует эту область некоторым значением.

Директивы резервирования и инициализации данных простых типов имеют формат:

Рис. 1. Директивы описания данных простых типов

На рис. 1 использованы следующие обозначения:
· ? показывает, что содержимое поля не определено, то есть при задании директивы с таким значением выражения содержимое выделенного участка физической памяти изменяться не будет. Фактически, создается неинициализированная переменная;
· значение инициализации — значение элемента данных, которое будет занесено в память после загрузки программы. Фактически, создается инициализированная переменная, в качестве которой могут выступать константы, строки символов, константные и адресные выражения в зависимости от типа данных. Подробная информация приведена в приложении 1;
· выражение — итеративная конструкция с синтаксисом, описанным на рис. 5.17. Эта конструкция позволяет повторить последовательное занесение в физическую память выражения в скобках n раз.
· имя — некоторое символическое имя метки или ячейки памяти в сегменте данных, используемое в программе.
· db — резервирование памяти для данных размером 1 байт. Директивой db можно задавать следующие значения:
· выражение или константу, принимающую значение из диапазона:
для чисел со знаком –128...+127; для чисел без знака 0...255;
· символьную строку из одного или более символов. Строка заключается в кавычки. В этом случае определяется столько байт, сколько символов в строке.
· dw — резервирование памяти для данных размером 2 байта.
· выражение или константу, принимающую значение из диапазона:
для чисел со знаком –32 768...32 767; для чисел без знака 0...65 535;
· выражение, занимающее 16 или менее бит, в качестве которого может выступать смещение в 16-битовом сегменте или адрес сегмента;
· 1- или 2-байтовую строку, заключенная в кавычки.
· dd — резервирование памяти для данных размером 4 байта.
· выражение или константу, принимающую значение из диапазона:
для чисел со знаком –2 147 483 648...+2 147 483 647;
для чисел без знака 0...4 294 967 295;
· относительное или адресное выражение, состоящее из 16-битового адреса сегмента и 16-битового смещения;
· строку длиной до 4 символов, заключенную в кавычки.
· df — резервирование памяти для данных размером 6 байт;
· dp — резервирование памяти для данных размером 6 байт. Директивами df и dp можно задавать следующие значения:
· выражение или константу, принимающую значение из диапазона:
для чисел со знаком –2 147 483 648...+2 147 483 647;
для чисел без знака 0...4 294 967 295;
· относительное или адресное выражение, состоящее из 32 или менее бит (для i80386) или 16 или менее бит (для младших моделей микропроцессоров Intel);
· адресное выражение, состоящее из 16-битового сегмента и 32-битового смещения;
· строку длиной до 6 байт, заключенную в кавычки.
· dq — резервирование памяти для данных размером 8 байт.
относительное или адресное выражение, состоящее из 32 или менее бит
· константу со знаком из диапазона –263...263–1;
· константу без знака из диапазона 0...264–1;
· строку длиной до 8 байт, заключенную в кавычки.
· dt — резервирование памяти для данных размером 10 байт.
относительное или адресное выражение, состоящее из 32 или менее бит
· адресное выражение, состоящее из 16-битового сегмента и 32-битового смещения;
· константу со знаком из диапазона –279...279-1;
· константу без знака из диапазона 0...280-1;
· строку длиной до 10 байт, заключенную в кавычки;
· упакованную десятичную константу в диапазоне 0...99 999 999 999 999 999 999.
Очень важно уяснить себе порядок размещения данных в памяти. Он напрямую связан с логикой работы микропроцессора с данными. Микропроцессоры Intel требуют следования данных в памяти по принципу: младший байт по младшему адресу.
Для иллюстрации данного принципа рассмотрим пример 1, в котором определим сегмент данных. В этом сегменте данных приведено несколько директив описания простых типов данных.
Пример 1. Пример использования директив резервирования и инициализации данных. Результатом работы данной программы будет строка 'Привет, все работает'
model	small
.stack	100h
.data
mes	db	'Привет, все работает',’$'	;определение строки
perem_1	db	0ffh			;определение контстанты
perem_2	dw	3a7fh			;определение контстанты
perem_3	dd	0f54d567ah		;определение контстанты
mas 	db	10	dup (' ')		;определение пустого массива из 10 байт
adr	dw	perem_3		;переменная adr содержит адрес
			;внутри сегмента переменной perem_3
a_full	dd	perem_3	;переменная a_full содержит полный
					;адрес переменной perem_3
fin	db	'Конец сегмента данных программы $'
.code
start:
;занесение в сегментный регистр адреса сегмента данных
mov	ax,@data
mov	ds,ax	
mov	ah,09h
mov	dx,offset mes
int	21h	;вывод на экран строки mes
mov	ax,4c00h
int	21h	;выход из программы
end	start

Окончание работы программы сопровождается полной выгрузкой программы из оперативной памяти, это осуществляется функцией 4с00h прерывания int 21h.
Все что в данной программе выделено жирным шрифтом обязательно при написании любой программы.
При написании программ на ассемблере регистр букв не важен.

Организация ввода-вывода на ассемблере

Ввод-вывод данных в компьютер осуществляется посредством различных периферийных устройств. Общение процессора с различными периферийными происходит через систему прерываний. Для ввода-вывода данных служит прерывание int 21h.
Основная последовательность действий при использовании прерываний 2lh (DOS):
1. Поместить номер функции в регистр ah.
2. Поместить передаваемые функции параметры в определенные регистры (они приведены при описании каждой функции).
3. Вызвать прерывание 2lh (DOS) командой int 21h
4. Извлечь результаты работы функций из определенных регистров. Какие именно регистры и что они содержат после возврата управления из функции программе пользователя, указывается при описании каждой функции.
Прерывание DOS 2lh предназначено для предоставления программисту различных услуг со стороны операционной системы. Этими услугами является набор функций. Какая именно функция должна быть вызвана, указывается числом в регистре ah.

Некоторые функции DOS (int 21h)
	Назначение
	Номер функции
	Вход
	Выход

	Ввод символа с ожиданием и эхосопровождением
	ah-0lh
	
	аl- ASCII-код символа

	Вывод символа
	ah-02h

	dl- ASCII-код символа
	

	Вывод символа на принтер
	ah-05h
	dl- ASCII-код символа
	

	Ввод символа с ожиданием и без эхосопровождения
	ah-07h
ah-08h
	
	al- ASCII-код символа (функция 08h при вводе проверяет, не нажато ли CTRL-BREAK)

	Вывод строки на экран
	ah-09h
	ds:dx = адрес строки с символом <$> на конце
	Введенная строка в буфере

	Ввод строки с клавиатуры
	ah-0ah
	ds:dx-anpec буфера с форматом:
1 байт — размер буфера для ввода (формирует пользователь);
2 байт — число фактически введенных символов (заполняет система по окончанию ввода — нажатию клавиши Enter (Odh)). Символ 0dh не учитывается во втором байте буфера;
3 байт и далее — введенная строка с символом 0dh на конце
	

	Проверка состояния буфера клавиатуры
	ah - 0bh
	
	al=0 — буфер пуст
al = 0ffh - в буфере есть символы

Пример 2. Программа ввода символа с клавиатуры
model	small
.stack	100h
.data
.code
start:	;занесение в сегментный регистр адреса сегмента данных
mov	ax, @data
mov	ds, ax	
;помещаем в регистр ah номер функции, которая вводит символ
mov	ah, 01h	
int	21h		;вводим символ с клавиатуры
;символ введенный с клавиатуры находится в регистре al
mov	ax,4c00h
int	21h	;выход из программы
end	start
Пример 3. Программа вывода символа на экран
model	small
.stack	100h
.data
f	db	'ф'	;помещаем в переменную f выводимый символ
.code
start:	;занесение в сегментный регистр адреса сегмента данных
mov	ax, @data
mov	ds, ax	
;помещаем в регистр ah номер функции, которая выводит символ
mov	ah, 02h	
mov	dl, f	; помещаем в dl символ
int	21h	;выводим символ на экран
mov	ax,4c00h
int	21h	;выход из программы
end	start

Пример 4. Вывод строки на экран
model	small
.stack	100h
.data
f	db	'строка вывода$'
;f – строковая переменная, которая обязательно заканчивается знаком $
.code
start:	;занесение в сегментный регистр адреса сегмента данных
mov	ax, @data
mov	ds, ax	
;помещаем в регистр ah номер функции, которая выводит строку на экран
mov	ah, 09h	
mov	dx, offset f ; помещаем в dx адрес строки, которую выводим
int	21h	;выводим строку
mov	ax,4c00h
int	21h	;выход из программы
end	start

Организация вычислений

Логические команды
Система команд микропроцессора содержит пять логических команд. Эти команды выполняют логические операции над битами операндов. Размерность операндов должна быть одинакова. В качестве операндов могут использоваться, регистры, ячейки памяти (переменные) и непосредственные операнды (числа). Любая логическая команда меняет значение следующих флагов of, sf,zf,pf,cf (переполнение, знак, нуля, паритет, перенос)

and операнд_1,операнд_2 — операция логического умножения (И - конъюнкция).
and 	ah, 0a1h;	ah:=ah٧0ah
and	bx, cx;		bx:=bx٧cx
and	dx, x1;		dx:=dx٧x1

Команда and может применяться для сброса определенных битов в 0 или для определения значения некоторых битов.
Например, необходимо 5й бит числа находящегося в bl установить в 0, остальные биты не трогать.
and	bl, 11011111b	или 	and bl, 0cfh

Если необходимо определить чему равен 5й бит, то
and 	bl, 00100000b	или	and bl, 20h
В результате если в регистре bl в 5м бите был 0, то после выполнения этой команды мы получим нулевой результат, обнулим весь регистр. Если же в регистре bl в 5м бите была 1, то мы получим не нулевой результат.

or операнд_1,операнд_2 — операция логического сложения (ИЛИ - дизъюнкцию)
or	al, x1;			al:=al & x1
or	eax,edx;			eax:=eax & edx
or	dx, 0fa11h;		dx:=dx & 0fa11h

Команда or может применяться для установки определенных бит в 1. Например, необходимо установить в единицу 4й и 7й биты регистра ah.
or 	ah, 10010000b		или	or ah, 90h

xor операнд_1,операнд_2 — операция логического исключающего сложения (исключающего ИЛИ ИЛИ-НЕ). Команда может применятся для выяснения того какие биты в операндах различаются ил для инвертирования состояния заданных бит в операнде_1. Например, необходимо определить совпадает ли содержимое регистров ax и dx
xor 	ax, dx		;если содержимое совпадает то в регистре ах мы получим
;нулевой результат, иначе не нулевой результат.
xor 	bh,10b		; инвертировали 1й бит в регистре bh

test операнд_1,операнд_2 — операция “проверить” (способом логического умножения). Команда выполняет поразрядно логическую операцию И над битами операндов операнд_1 и операнд_2. Состояние операндов остается прежним, изменяются только флаги zf, sf, и pf, что дает возможность анализировать состояние отдельных битов операнда без изменения их состояния.
not операнд — операция логического отрицания. Команда выполняет поразрядное инвертирование (замену значения на обратное) каждого бита операнда. Результат записывается на место операнда.

not 	ax	;ax:=

Пример 5. Логическое сложение двух однобайтных чисел.
model	small
.stack	100h
.data
x1 	db	0c2h	;первое слагаемое
x2	db	022h	;второе слагаемое
y	db	?	;переменная результата
.code
start:
mov	ax,@data
mov	ds,ax
mov 	al, x1	;в al помещаем первое слагаемое
or	al, x2	;осуществляем логическое сложение, результат в al
mov	y, al	;помещаем результат на место
mov	ax,4c00h
int	21h
end	start

Следующие две команды позволяют осуществить поиск первого установленного в 1 бита операнда. Они появились в 486 процессоре.
bsf операнд_1, операнд_2 – сканирование бит операнда_2 от младшего к старшему в поисках первого бита установленного в 1. Если такой обнаружится, то в операнд_1 заноситься номер этого бита в целочисленном формате.

Пример:
mov 	al,02h
bsf 	bx,al	; bx:=1, т.к. 1й бит регистра al=1

bsr операнд_1, операнд_2 – сканирование бит операнда_2 от старшего к младшему в поисках первого бита установленного в 1. Если такой обнаружится, то в операнд_1 заноситься номер этого бита в целочисленном формате.
Пример:
mov 	al,82h
bsr	bx,al	; bx:=6, т.к. 6й бит регистра al=1
Если операнд_2 равен 0 то вышеописанные две команды устанавливают флаг нуля zf в 1, иначе в 0.

Арифметические операции над целыми двоичными числами
Сложение двоичных чисел
inc операнд - операция инкремента, то есть увеличения значения операнда на 1;
inc	ax;	ax:=ax+1
inc 	x1;	х1:=х1+1
add оп1,оп2 - команда сложения с принципом действия: оп1 = оп1 + оп2 (addition)
add 	al, bl
add 	ax, 0fe2h
add 	ebx, x1+2
add 	x1, 0fh
add	x2, ax
adc оп1,оп2 - команда сложения с учетом флага переноса cf. оп1 = оп1 + оп2 + знач_cf

Вычитание двоичных чисел
dec операнд — операция декремента, то есть уменьшения значения операнда на 1;
dec 	cx 	;cx:=cx-1
dec	x
sub операнд_1,операнд_2 — команда вычитания; ее принцип действия:
операнд_1 = операнд_1 – операнд_2
sub 	al, bl;	al:=al-bl
sub 	ax, x1
sub	x2, dx
sub	eax, 0f35h
sub	x2, 22h
sbb операнд_1,операнд_2 — команда вычитания с учетом заема (флага cf):
операнд_1 = операнд_1 – операнд_2 – значение_cf

Пример 6. Сложение двух однобайтных чисел.
model	small
.stack	100h
.data
x1 	db	0c2h	;первое слагаемое
x2	db	022h	;второе слагаемое
y	db	?	;результат
.code
start:
mov	ax,@data
mov	ds,ax
mov 	al, x1	;помещаем в al первое слагаемое
add	al, x2	;складываем х1 и х2
mov	y, al	;помещаем результат на место
mov	ax,4c00h
int	21h
end	start

Умножение двоичных чисел
mul множитель_1 - операция умножения двух целых чисел без учета знака
Алгоритм работы:
Команда выполняет умножение двух операндов без учета знаков. Алгоритм зависит от формата операнда команды и требует явного указания местоположения только одного сомножителя, который может быть расположен в памяти или в регистре. Местоположение второго сомножителя фиксировано и зависит от размера первого сомножителя. Местоположение результата также зависит от размера первого сомножителя.

mul 	dl;	ax:=al*dl, dl- множитель_1 , al- множитель_2
mul	x1;	dx:ax=ax*0ad91h, x1 word- множитель_1 , ax- множитель_2
mul	ecx;	edx:eax=eax*ecx, ecx- множитель_1 , eax- множитель_2

в результате умножения может возникнуть ситуация когда результат по размеру превысит 16 или 32 бита, тогда старшая часть результата умножения заноситься в dx или edx соответственно.
imul множитель_1 - операция умножения двух целочисленных двоичных значений со знаком
Деление двоичных чисел
div делитель - выполнение операции деления двух двоичных беззнаковых значений
Алгоритм работы:
Для команды необходимо задание двух операндов — делимого и делителя. Делимое задается неявно, и размер его зависит от размера делителя, который указывается в команде. Расположение результата зависит от размера делителя.
div 	dl	;ah:al=ax/dl, ax –делимое, dl- делитель , ah-частное, al -остаток
div	x1	;ax:dx=dx:ax/0ad91h, dx:ax –делимое, x1 word- делитель ,
		;ax-частное, dx -остаток
div	ecx	;eax:edx=edx:eax/ecx, edx:eax –делимое, ecx- делитель ,
		;eax-частное, edx -остаток

idiv делитель - операция деления двух двоичных значений со знаком

Пример 7. Умножение двух однобайтных чисел.
model	small
.stack	100h
.data
x1 	db	78	;первый множитель
yl	db	?	;первый байт результата
yh	db	?	;второй байт результата
.code
start:
mov	ax,@data
mov	ds,ax
xor	ax, ax	;очищаем регистр ax
mov 	al, 25	;помещаем в al второй сомножитель
mul	x1
jnc	m1	;если нет переполнения, переходим на метку m1
mov	yh,ah	;иначе старший байт результата помещаем в yh
m1:
mov	yl, al	;результат помещаем на место
mov	ax,4c00h
int	21h
end	start

Пример 8. Деление двух однобайтных чисел.
model	small
.stack	100h
.data
x1 	db	6	;делитель
yl	db	?	;остаток
yh	db	?	;частное
.code
start:
mov	ax,@data
mov	ds,ax
xor	ax, ax	;очищаем регистр ax
mov 	ax, 25	;помещаем в al делимое
div	x1
mov	yh,ah	;помещаем частное на место
mov	yl, al	;помещаем остаток на место
mov	ax,4c00h
int	21h
end	start

ASCII коды и их интепритация

Ввод информации с клавиатуры и вывод ее на экран осуществляется в символьном виде, т.е. любой символ предоставляется в ASCII кодах. Причем на один символ идет один ASCII код. На два символа – два ASCII кода, и т.д. Любое число, вводимое с клавиатуры и выводимое на экран, представляется последовательностью ASCII кодов.

Табл.1. ASCII коды цифр
	Символ шестнадцатеричной цифры
	Двоичная тетрада
	ASCII код
(двоичное представление)
	Разница

	0
	0000
	30h (0011 0000)
	30h

	1
	0001
	31h (0011 0001)
	30h

	2
	0010
	32h (0011 0010)
	30h

	3
	0011
	33h (0011 0011)
	30h

	4
	0100
	34h (0011 0100)
	30h

	5
	0101
	35h (0011 0101)
	30h

	6
	0110
	36h (0011 0110)
	30h

	7
	0111
	37h (0011 0111)
	30h

	8
	1000
	38h (0011 1000)
	30h

	9
	1001
	39h (0011 1001)
	30h

	A a
	1010
	41h (0100 0001) 61h (0110 0001)
	37h 57h

	B b
	1011
	42h (0100 0010) 62h (0110 0010)
	37h 57h

	C c
	1100
	43h (0100 0011) 63h (0110 0011)
	37h 57h

	D d
	1101
	44h (0100 0100) 64h (0110 0100)
	37h 57h

	E e
	1110
	45h (0100 0101) 65h (0110 0101)
	37h 57h

	F f
	1111
	46h (0100 0110) 66h (0110 0110)
	37h 57h

Рассмотрим последовательность действий для преобразования чисел в их ASCII код и наоборот.

Ввод информации с клавиатуры:
1. Ввод символа с клавиатуры, один ASCII код находится в dl. Заранее не известно, что это за число от 0 до 9 или от а до f.
Cmp 	dl, 040h
Jb	m1	; если ASCII код меньше 40h значит ввели цифру от 0 до 9,
;переходим на метку m1
Cmp 	dl, 047h	; иначе ввели букву, заглавную или маленькую?
Jb 	m2	;если ввели заглавную, переходим на m2, иначе выполняем
;дальше по программе
sub 	dl, 057h	;в dl получаем из символов число a..f h
jmp 	m3	;переходим на m3 чтобы не выполнять лишних вычислений
m2: 	sub 	dl, 037h	;в dl получаем из символов число a..f h
jmp	 m3
m1: 	sub 	dl, 030h	;в dl получаем из символов число 0..9 h
m3:

Далее приведен оптимизированный код преобразования числа из ASCII кодов. Подумайте в чем разница.
Cmp dl,040h
Jb m1
Cmp dl,047h
Jb m2
Sub dl, 020h
m2: sub dl, 07h
m1: sub dl, 030h

2. Ввод строки, отличается только тем, что такое сравнение надо проводить с каждым элементом, т.е. надо организовать цикл и обращение к каждому элементу. Рассмотрим позднее.
Вывод информации на экран
 (
0
)1. Предположим что, число, которое мы хотим вывести, находится в регистре bl. Вывод символа осуществляется из регистра dl, 02 функция INT 21H. Число может быть одно или двузначное, например 7h или 5Fh. Для универсальности программы будем считать, что надо вывести двузначное число. А для этого надо получить отдельно десятки и единицы, и получить для них два ASCII кода.
;двузначное число которое хотим вывести находится в bl
mov 	dl, bl 	; помещаем число в регистр dl
;сдвигаем содержимое dl на 4 бита вправо, чтобы получить отдельно десятки
shr 	dl, 4	
and 	bl, 0fh	;получаем отдельно единицы
cmp 	dl, 0ah	;сравниваем dl с ah
jb 	m1	;если меньше переходим на m1
add 	dl, 07h
m1: 	add 	dl, 30h
mov 	ah, 02h
int 	21h
mov 	dl, bl
cmp 	dl, 0ah	;сравниваем dl с ah
jb 	m2
add 	dl, 07h
m2: 	add 	dl, 30h
int 	21h

Попробуйте сами разобраться в приведенном кусочке кода.

 (
5
F
7

5

F
3
5
6
6
ASCII
 код
5Fh
)

Команды передачи управления

По принципу действия, команды микропроцессора, обеспечивающие организацию переходов в программе, можно разделить на три группы:
1. Команды безусловной передачи управления:
- команда безусловного перехода; jmp
- вызова процедуры и возврата из процедуры; call, ret
- вызова программных прерываний и возврата из программных прерываний. Int, iret
2. Команды условной передачи управления:
- команды перехода по результату команды сравнения cmp;
- команды перехода по состоянию определенного флага;
- команды перехода по содержимому регистра ecx/cx.
3. Команды управления циклом:
- команда организации цикла со счетчиком ecx/cx;
- команда организации цикла со счетчиком ecx/cx с возможностью досрочного выхода из цикла по дополнительному условию.

jmp адрес_перехода - безусловный переход без сохранения информации о точке возврата. Аналог goto.

Условные переходы
Команды условного перехода имеют одинаковый синтаксис:
jcc метка_перехода
Мнемокод всех команд начинается с “j” — от слова jump (прыжок), cc — определяет конкретное условие, анализируемое командой. Что касается операнда метка_перехода, то эта метка может находится только в пределах текущего сегмента кода, межсегментная передача управления в условных переходах не допускается.
Для того чтобы принять решение о том, куда будет передано управление командой условного перехода, предварительно должно быть сформировано условие, на основании которого и будет приниматься решение о передаче управления. Источниками такого условия могут быть:
· любая команда, изменяющая состояние арифметических флагов;
· команда сравнения cmp, сравнивающая значения двух операндов;
· состояние регистра ecx/cx.

jcxz метка_перехода (Jump if cx is Zero) — переход, если cx ноль;
jecxz метка_перехода (Jump Equal ecx Zero) — переход, если ecx ноль.

Условные переходы по содержимому флагов
	Название флага
	Номер бита в eflags/flag
	Команда условного перехода
	Значение флага для осуществления перехода

	Флаг переноса cf
	1
	jc
	cf = 1

	Флаг четности pf
	2
	jp
	pf = 1

	Флаг нуля zf
	6
	jz
	zf = 1

	Флаг знака sf
	7
	js
	sf = 1

	Флаг переполнения of
	11
	jo
	of = 1

	Флаг переноса cf
	1
	jnc
	cf = 0

	Флаг четности pf
	2
	jnp
	pf = 0

	Флаг нуля zf
	6
	jnz
	zf = 0

	Флаг знака sf
	7
	jns
	sf = 0

	Флаг переполнения of
	11
	jno
	of = 0

Пример 9. Определите, равны ли два числа вводимые пользователем с клавиатуры. Определить равенство чисел можно используя вычитание, если разность исследуемых чисел равна 0, то они равны.
model	small
.stack	100h
.data
s1	db	'числа равны$'
s2	db	'числа не равны$'
.code
start:
mov	ax,@data
mov	ds,ax
mov	ah,01h
int	21h	;ввели первое число
mov	dl,al	;посылаем в dl первое число
int	21h	;ввели второе число
sub	al,dl	;сравнили числа
jnz	m1	;если получили не 0 результат, то на метку m1
mov	dx, offset s1 ;иначе выводим строку s1, о том что числа равны.
jmp	m2
m1:	mov	dx, offset s2	;числа не равны, выводим строку s2
m2:	mov 	ah,09h
int	21h	;вывод информационную строку
mov	ax,4c00h
int	21h
end	start

Команда сравнения cmp
cmp операнд_1,операнд_2 - сравнивает два операнда и по результатам сравнения устанавливает флаги. Команда сравнения cmp имеет интересный принцип работы. Он абсолютно такой же, как и у команды вычитания sub. Единственное, чего она не делает — это запись результата вычитания на место первого операнда.
Алгоритм работы:
-выполнить вычитание (операнд1-операнд2);
-в зависимости от результата установить флаги, операнд1 и операнд2 не изменять (то есть результат не запоминать).

Условные переходы после команд сравнения
	Типы операндов
	Мнемокод команды условного перехода
	Критерий условного перехода
	Значения флагов для осществления перехода

	Любые
	je
	операнд_1 = операнд_2
	zf = 1

	Любые
	jne
	операнд_1<>операнд_2
	zf = 0

	Со знаком
	jl/jnge
	операнд_1 < операнд_2
	sf <> of

	Со знаком
	jle/jng
	операнд_1 <= операнд_2
	sf <> of or zf = 1

	Со знаком
	jg/jnle
	операнд_1 > операнд_2
	sf = of and zf = 0

	Со знаком
	jge/jnl
	операнд_1 => операнд_2
	sf = of

	Без знака
	jb/jnae
	операнд_1 < операнд_2
	cf = 1

	Без знака
	jbe/jna
	операнд_1 <= операнд_2
	cf = 1 or zf=1

	Без знака
	ja/jnbe
	операнд_1 > операнд_2
	cf = 0 and zf = 0

	Без знака
	jae/jnb
	операнд_1 => операнд_2
	cf = 0

Пример 10. Определите, равны ли два числа вводимые пользователем с клавиатуры.
model	small
.stack	100h
.data
s1	db	'числа равны$'
s2	db	'числа не равны$'
.code
start:
mov	ax,@data
mov	ds,ax
mov	ah,01h
int	21h	;ввели первое число
mov	dl,al
mov	ah,01h
int	21h	;ввели второе число
cmp	al,dl	;сравнили числа
jne	m1
mov	dx, offset s1
jmp	m2
m1:	mov	dx, offset s2
m2:	mov 	ah,09h
int	21h	;вывод информационную строку
mov	ax,4c00h
int	21h
end	start

Пример 11. Даны три числа, найти среди них максимальное.
model	small
.stack	100h
.data
s1	db	'максимальное число',10,13,'$'
x1	db	34
x2	db	56
x3	db	45
.code
start:
mov	ax,@data
mov	ds,ax
mov	dx, offset s1
mov 	ah,09h
int	21h	;вывод информационную строку
;находим максимальное число
mov	dl,x1	;dl:=x1
cmp	dl,x2	;сравниваем х1 и х2
ja	m1	;если х1>х2, то на m1
mov	dl,x2	;иначе dl:=x2
m1:	cmp	dl,x3	;сравниваем dl и х2
ja	m2	;если dl>х3 то на m2
mov	dl,x3	
;в dl находится самый максимальный элемент
m2:	mov	ah,02h	
int 	21h	;выводим максимальный элемент
mov	ax,4c00h
int	21h
end	start

Организация циклов
loop метка_перехода (Loop) — повторить цикл
Работа команды заключается в выполнении следующих действий:
- декремента регистра ecx/cx;
- сравнения регистра ecx/cx с нулем:
- если (ecx/cx) > 0, то управление передается на метку перехода;
- если (ecx/cx) = 0, то управление передается на следующую после loop команду
Организация цикла:
mov cx, количество циклов
м1: тело цикла
 loop m1
loope/loopz метка_перехода (Loop till cx <> 0 or Zero Flag = 0) — повторить цикл, пока cx <> 0 или zf = 0.
loopne/loopnz метка_перехода (Loop till cx <> 0 or Not Zero flag=0) — повторить цикл пока cx <> 0 или zf = 1
Недостаток команд организации цикла loop, loope/loopz и loopne/loopnz в том, что они реализуют только короткие переходы (от –128 до +127 байт).
Организация вложенных циклов:
mov cх,n ; в сх заносим количество итераций внешнего цикла
m1:
 (
Внешний цикл
)push cx
…
mov cx,n1; в сх заносим количество итераций внутреннего цикла
 			m2:
тело внутреннего цикла
			loop m2
			…
			pop cx
 			loop m1

Пример 12. Напишите программу подсчета у=1+2+3+…+n, n не более 10000.

model	small
.stack	100h
.data
yb	dd	?
ym	dw	?
s1	db	'введите n',10,13,'$'
.code
start:
mov	ax,@data
mov	ds,ax
mov 	dx, offset s1
mov	ah,09h
int	21h

mov	cx,3
m: 	shl	bx,4
mov	ah,01h
int 	21h			вводим n в регистр bx
 sub	ax,130h
add	bx,ax
loop	m

mov	cx,bx
xor	dx,dx
xor	al,al
m1:	add	dx,cx		считаем у
jnc	m2
mov	al,1
m2:	loop	m1

cmp	al,1
je	m3
mov	ym,dx
m3:	mov	yb,edx
mov	ax,4c00h
int	21h
end	start

Команды обработки строк

Цепочка – это последовательность элементов, размер которых может быть байт, слово, двойное слово. Содержимое этих элементов может быть любое – символы, числа. В системе команд микропроцессора имеется семь операций-примитивов обработки цепочек. Каждая из них реализуется в микропроцессоре тремя командами, в свою очередь, каждая из этих команд работает с соответствующим размером элемента — байтом, словом или двойным словом.
Типовой набор действий для выполнения любой цепочечной команды:
· Установить значение флага df в зависимости от того, в каком направлении будут обрабатываться элементы цепочки — в направлении возрастания или убывания адресов.
· Загрузить указатели на адреса цепочек в памяти в пары регистров ds:(e)si и es: (e)di.
· Загрузить в регистр ecx/cx количество элементов, подлежащих обработке.
· Выдать цепочечную команду с префиксом повторений.

Пересылка цепочек
movs адрес_прием, адрес_источника (MOVe String)- переслать цепочку;
movsb MOVe String Byte) — переслать цепочку байт;
movsw (MOVe String Word) — переслать цепочку слов;
movsd (MOVe String Double word) — переслать цепочку двойных слов.
Команда копирует байт, слово или двойное слово из цепочки источника, в цепочку приемника. Размер пересылаемых элементов ассемблер определяет, исходя из атрибутов идентификаторов. К примеру, если эти идентификаторы были определены директивой db, то пересылаться будут байты, если идентификаторы были определены с помощью директивы dd, то пересылке подлежат двойные слова.
Для цепочечных команд с операндами типа movs адрес_приемника,адрес_источника, не существует машинного аналога. При трансляции в зависимости от типа операндов транслятор преобразует ее в одну из трех машинных команд: movsb, movsw или movsd.
Сама по себе команда movs пересылает только один элемент, исходя из его типа, и модифицирует значения регистров esi/si и edi/di. Если перед командой написать префикс rep, то одной командой можно переслать до 64 Кбайт данных. Число пересылаемых элементов должно быть загружено в счетчик — регистр cx (use16) или ecx (use32).
Пример 13. Пересылка строк командой movs
MODEL small
.STACK 256
.data
source db 'Тестируемая строка','$' ;строка-источник
dest db 19 DUP (' ') ;строка-приёмник
.code
main:
mov ax,@data		;загрузка сегментных регистров
 mov ds,ax		;настройка регистров DS и ES на адрес сегмента данных
mov es,ax
cld 			;сброс флага DF — обработка строки от начала к концу
lea si,source		;загрузка в si смещения строки-источника
lea di,dest 		;загрузка в DS смещения строки-приёмника
mov cx,20 		;для префикса rep — счетчик повторений (длина строки)
rep movs dest,source	;пересылка строки
lea dx,dest
mov ah,09h ;вывод на экран строки-приёмника
int 21h
mov ax,4c00h
int 21h
end main

Операция сравнения цепочек
cmps адрес_приемника,адрес_источника (CoMPare String) — сравнить строки;
cmpsb (CoMPare String Byte) — сравнить строку байт;
cmpsw (CoMPare String Word) — сравнить строку слов;
cmpsd (CoMPare String Double word) — сравнить строку двойных слов.
Алгоритм работы команды cmps заключается в последовательном выполнении вычитания (элемент цепочки-источника — элемент цепочки-получателя) над очередными элементами обеих цепочек. Принцип выполнения вычитания командой cmps аналогичен команде сравнения cmp. Она, так же, как и cmp, производит вычитание элементов, не записывая при этом результата, и устанавливает флаги zf, sf и of.
После выполнения вычитания очередных элементов цепочек командой cmps, индексные регистры esi/si и edi/di автоматически изменяются в соответствии со значением флага df на значение, равное размеру элемента сравниваемых цепочек.

Операция сканирования цепочек
scas адрес_приемника (SCAning String) — сканировать цепочку;
scasb (SCAning String Byte) — сканировать цепочку байт;
scasw (SCAning String Word) — сканировать цепочку слов;
scasd (SCAning String Double Word) — сканировать цепочку двойных слов
Эти команды осуществляют поиск искомого значения, которое находится в регистре al/ax/eax. Принцип поиска тот же, что и в команде сравнения cmps, то есть последовательное выполнение вычитания
(содержимое регистра_аккумулятора – содержимое очередного_элемента_цепочки).
В зависимости от результатов вычитания производится установка флагов, при этом сами операнды не изменяются.

Загрузка элемента цепочки в аккумулятор
lods адрес_источника (LOaD String) — загрузить элемент из цепочки в регистр-аккумулятор al/ax/eax;
lodsb (LOaD String Byte) — загрузить байт из цепочки в регистр al;
lodsw (LOaD String Word) — загрузить слово из цепочки в регистр ax;
lodsd (LOaD String Double Word) — загрузить двойное слово из цепочки в регистр eax.
Эта операция-примитив позволяет извлечь элемент цепочки и поместить его в регистр-аккумулятор al, ax или eax. Эту операцию удобно использовать вместе с поиском (сканированием) с тем, чтобы, найдя нужный элемент, извлечь его (например, для изменения).

Перенос элемента из аккумулятора в цепочку
stos адрес_приемника (STOre String) - сохранить элемент из регистра-аккумулятора al/ax/eax в цепочке;
stosb (STOre String Byte) - сохранить байт из регистра al в цепочке;
stosw (STOre String Word) - сохранить слово из регистра ax в цепочке;
stosd (STOre String Double Word) - сохранить двойное слово из регистра eax в цепочке.
Эта операция-примитив позволяет произвести действие, обратное команде lods, то есть сохранить значение из регистра-аккумулятора в элементе цепочки. Эту операцию удобно использовать вместе с операцией поиска (сканирования) scans и загрузки lods, с тем, чтобы, найдя нужный элемент, извлечь его в регистр и записать на его место новое значение.

Пример 14. Подсчитайте количество несовпадающих элементов в заданной и введенной строках.
Model small
.stack 100h
.data
s0	db ‘Заданная строка$’
s1	db 16 	;задаем количество символов во вводимой строке + знак Enters
s2	db ?, 16 dup (?)	; ?- под количество введенных символов, массив под строку
s3	db 10,13, ‘Количество несовпадающих элементов - $'	;информац. строка
.code
mov 	ax, @data
mov	ds, ax	;задаем адрес сегмента данных
mov 	es, ax	;настраиваем адрес сегмента данных, где хранится строка приемник
;вводим сравниваемую строку
mov	ah, 0ah
mov 	dx, offset s1
int 	21h
;выводим информационную строку
mov	ah, 09h
mov 	dx, offset s3
int	21h
;сравниваем строки, один элемент из заданной строки сравниваем со всеми ; элементами введенной строки
mov	dl,’0’	;в dl ascii-код 0
mov	cx, 16	;в сх количество элементов в заданной строке
mov si, offset s0	;в si адрес заданной строки-источника
z_str:	push	cx	;сохраняем счетчик внешних циклов в стеке
lodsb		;загружаем элемент из заданной строки в аккумулятор, al
mov	di, offset s2	;в di адрес введенной строки-приемника
mov 	cl, s2[di]	;в cl количество введенных элементов
xor 	ch, ch		; обнуляем ch, т.к. в цикле счетчиком является сх
inc	di		;на первый элемент строки-приемника
repe	scacb	
;сканируем строку-приемник до тех пор пока элемент не = содержимому al,
;или пока не кончится строка
jz	m1	;zf=1, если в строке встретился элемент = содержимому al
inc	dl	; считаем количество не совпадающих элементов
m1:	;внутренний цикл по введенной строке закончился
pop 	cx	;восстанавливаем содержимое сх
loop z_str	
;после выхода из цикла в dl количество не совпадающих элементов
mov	ah, 02h
int	21h	;выводим dl
mov ax,4c00h
int 21h
end

Массивы

Организация одномерных массивов
Все элементы массива располагаются в памяти последовательно
Описание элементов массива
mas db 1,2,3,4,5
mas dw 5 dup (0)
Доступ к элементам массива
mov ax,mas[si]	; в si номер элемента в массиве
mov mas[si], ax	; в di номер элемента в массиве

Пример 15. Найти в строке хотя бы один нулевой элемент
model	small
.stack	100h
.data
bufer	dw	25 		;формирую размер буфера для ввода строки
mas db	25	dup (' ')	;формирую буфер
subj1	db	‘в строке найден нулевой элемент', '$'
subj2	db	‘в строке не найден нулевой элемент', '$'
.code
main:
mov	ax,@data
mov	ds,ax
; ввод строки с клавиатуры
mov	ah,0ah
mov	dx, offset bufer
int	21h	
;поиск нулевого элемента
xor 	si, si
mov 	cl, mas[si] 	;загружаем в сх количество элементов в строке
mov 	al, 030h		;в ax загружаем ASCII код нуля
m1:	inc 	si		
cmp 	al, mas[si]
je 	m2
;если в строке найдем нулевой элемент, то выходим из цикла на вывод subj1
loop 	m1
;нормальный выход из цикла означает что в строке нет нулевых элементов
lea	dx, subj2
jmp	m3
m2:	lea	dx,subj1
m3:	mov 	ah, 09h
int	21h
mov	ax,4c00h
int	21h
end	main

Организация двумерных массивов
!Специальных средств для описания двумерных массивов в ассемблере нет!
Двумерный массив описывается также как и одномерный массив, отличие заключается в трактовке расположения элементов. Пусть последовательность элементов трактуется как двумерный массив, расположенный по строкам, тогда адрес элемента [i,j] вычисляется так
База+колич_элем_строке*размер_элем*I+j

Пример 16. Найти максимальный элементы в каждой строке массива 5*7
model	small
.stack	100h
.data
mas	dw	5 dup(7 dup(0))
max	dw	0
subj	db	‘введите строку',13,10,'$'
.code
main:
mov	ax, @data
mov	ds, ax
;заполнение массива
xor	si, si
mov 	cx, 05h
incykl:	push	cx
mov 	ah, 09h
lea 	dx, subj
int	21h	;вывод информационной строки
mov	cx, 07h
mov 	ah, 01h
outcykl: int	21h	;ввод элементов массива
mov	mas[si], ax	;размещение элементов на месте
inc	si
inc	si
loop	outcykl
pop	cx
loop	incykl
;поиск максимального/ минимального в строках
xor	si,si
mov	cx, 05h
s1t:	push	cx
mov	cx, 06h
mov	dx, mas[si]
maxi:	add 	si, 2
cmp	dx, mas[si]
ja	min1	;если меньше то переходим
mov	dx, mas[si]
min1:	loop	maxi
;вывод максимального
mov	ah, 02h
int	21h
pop	cx
loop	s1t
mov	ax, 04c00h
int	21h
end	main

Процедуры. Макрокоманды

Процедура, часто называемая подпрограммой, - это правильным образом оформленная совокупность команд, которая будучи однократно описана, при необходимости может быть вызвана в любом месте программы. Процедура представляет собой группу команд для решения конкретной подзадачи и обладает средствами получения управления из точки вызова задачи более высокого уровня и возврата управления в эту точку. В простейшем случае программа может состоять из одной процедуры.
Описание процедуры может размещается в любом месте программы, но таким образом чтобы на нее случайным образом не попало управление:
· в начале программы, до первой исполняемой команды;
· в конце, после команды возвращающей управление операционной системе;
· промежуточный вариант, тело процедуры располагается внутри другой процедуры или основной программы. В этом случае необходимо предусмотреть обход процедуры командой jmp;
· в другом модуле.
Синтаксис описания процедуры:
Имя_процедуры PROC		заголовок
Команды, директивы 			тело процедуры
[ret]					возврат из процедуры
[имя_процедуры] ENDP		конец процедуры
Вызов процедуры осуществляется командой
CALL [модификатор] имя_процедуры
Команда call передает управление по адресу с символическим адресом имя_процедуры, с сохранением в стеке адреса возврата, команды следующей после команды call.
Возврат из процедуры осуществляется по команде
RET [число]
Команда ret считывает адрес возврата из стека и загружает его в регистры cs и ip/eip, возвращая таким образом управление команде, следующей за командой call. Число – необязательный параметр, обозначающий количество элементов, удаляемых из стека при возврате из процедуры. Размер элемента зависит от используемой модели сегментации 32 или 16 разрядной.
Передача аргументов из/в процедуру может осуществляться через регистры, переменные или стек.

Пример.
	Model small
.stack 100h
.data
w db 25 dup (?)
.code
vvod proc
mov 	ah, 0ah
lea	dx, w
int	21h
ret
vvod endp
main:
	…
Call schet
Call	vvod
…
exit:
mov ax,4c00h
int 21h
schet proc
..
ret
schet endp
end main

Макрокоманда является одним из многих механизмов замены текста программы. С помощью макрокоманды в текст программы можно вставлять последовательности строк и привязывать их к месту вставки. Макрокоманда представляет собой строку, содержащую некоторое имя – имя макрокоманды, предназначенное для того, чтобы быть замещенным одной или несколькими другими строками при трансляции.
Для работы с макрокомандой вначале необходимо задать ее шаблон-описание, так называемое макроопределение.
Имя_макрокоманды MACRO [список_формальных_аргументов]
<Тело макроопределения>
ENDM
Существует три варианта расположения макроопределений:
· в начале исходного текста программы до сегмента кода и данных с тем, чтобы не ухудшать читабельность программы. В данном случае макрокоманды будут актуальны только в пределах этой программы;
· в отдельном файле. Для того, чтобы использовать эти макроопределения в других программах, необходимо в начале исходного текста этих программ записать директиву
 include имя_файла
· в макробиблиотеке. Макробиблиотека создается в том случае, когда написанные макросы используются практически во всех программах. Подключается библиотека директивой include. Недостаток этого и предыдущего методов в том, что в исходный текст программы включаются абсолютно все макроопределения. Для исправления ситуации можно использовать директиву purge, в качестве операндов которой перечисляются макрокоманды, которые не должны включаться в текст программы.
Include macrobibl.inc	;в исходный текст программы будут вставлены строки из macrobibl.inc
Purge	outstr, exit	;за исключением макроопределений outstr, exit

Активизация макроса осуществляется следующим образом:
Имя_макрокоманды список_ фактических_ аргументов
	Model 	small
Vivod	macro	rg
Mov	dl, rg
Mov	ah, 02h
Int	21h
endm
.data
..
.code
..
vivod	al
..
	Model 	small
sravnenie	macro	rg, met
cmp rg , ‘a’
ja met
add rg, 07h
met: add rg, 30h
endm
.data
..
.code
..
sravnenie al, m1..

Функционально макроопределения похожи на процедуры. Сходство их в том, что и те, и другие достаточно один раз где-то описать, а затем вызывать их специальным образом. На этом их сходство заканчивается, и начинаются различия, которые в зависимости от целевой установки можно рассматривать и как достоинства и как недостатки:
- в отличие от процедуры, текст которой неизменен, макроопределение в процессе макрогенерации может меняться в соответствии с набором фактических параметров. При этом коррекции могут подвергаться как операнды команд, так и сами команды. Процедуры в этом отношении объекты менее гибки;
- при каждом вызове макрокоманды ее текст в виде макрорасширения вставляется в программу. При вызове процедуры микропроцессор осуществляет передачу управления на начало процедуры, находящейся в некоторой области памяти в одном экземпляре. Код в этом случае получается более компактным, хотя быстродействие несколько снижается за счет необходимости осуществления переходов.

Пример 17. Найти максимальный элементы в каждой строке массива 5*7, с использованием процедур

model	small
.stack	100h
.data
mas	dw	5 dup(7 dup(0))
max	dw	0
subj	db	‘введите строку',13,10,'$'
.code
;процедура ввода строки
vvod_str		proc
mov 	ah, 09h
lea 	dx, subj
int	21h
mov	cx, 07h
mov 	ah, 01h
outcykl: int	21h
mov	mas[si], ax
inc	si
inc	si
loop	outcykl
ret
vvod_str		endp
;процедура поиска максимального в строке
poick_maxi	proc
mov	cx, 06h
mov	dx, mas[si]
maxi:	add 	si, 2
cmp	dx, mas[si]
ja	min1	;если меньше то переходим
mov	dx, mas[si]
min1:	loop	maxi
ret
poick_maxi	endp
main proc
mov	ax, @data
mov	ds, ax
xor	si, si		;заполнение массива
mov 	cx, 05h
incykl:	push	cx
call 	vvod_str		;вызов процедуры по вводу строки
pop	cx
loop	incykl
;поиск максимального/ минимального в строках
xor	si,si
mov	cx, 05h
s1t:	push	cx
call	poick_maxi	;вызов процедуры поиска максимального элемента
mov	ah, 02h		;вывод максимального
int	21h
pop	cx
loop	s1t
mov	ax, 04c00h
int	21h
endр	main

Программирование контроллера приоритетных прерываний

Для организации обработки аппаратных прерываний в вычислительных системах применяется программируемый контроллер прерываний, выполненный в виде специальной микросхемы i8259А, отечественный аналог микросхема КР580ВМ59. Эта микросхема может обрабатывать запросы от восьми источников внешних прерываний. В стандартной конфигурации вычислительных систем используют две последовательно соединенные микросхемы i8259А.
Функции микросхемы ПКП:
· фиксирование запросов на обработку прерывания от восьми источников, формирование единого запроса на прерывание и подача его на вход INTR микропроцессора;
· формирование номера вектора прерывания и выдача его на шину данных;
· организация приоритетной обработки прерываний;
· запрещение (маскирование) прерываний с определенными номерами.
На рис.1 представлена структурная схема контроллера.
 (
Irq
1
Irq
2
Irq
3
Irq
4
Irq
5
Irq
7
Irq
6
Irq
0
INTA
INT
Блок управления

чтением/записью
Буфер данных
Схема каскадирования
d
7 ...
 d
0
Регистр состояния (
ISR
)
Арбитр приоритетов
Регистр маскирования прерываний (
IMR
)
Регистр прерываний (
IRR
)
Программируемый контроллер прерываний (ПКП)
Схема управления
 ПКП
)Рис.1.	Структурная схема ПКПП.
Программирование контроллера приоритетных прерываний

Цель работы:
Исследование принципа программного управления микросхемы контроллера прерываний (ПКП) i8259А с помощью ПК, исследование различных режимов работы ПКП
Микросхема i8259A имеет два состояния:
· состояние настройки параметров обслуживания прерываний, во время которого путем посылки в определенном порядке так называемых управляющих слов производится инициализация контроллера;
· состояние работы — это обычное состояние контроллера, в котором производится фиксация запросов на прерывание и формирование управляющей информации для микропроцессора в соответствии с параметрами настройки.
Возможность программирования контроллера позволяет достаточно гибко изменять алгоритмы обработки аппаратных прерываний.
В процессе загрузки компьютера и в дальнейшем во время работы контроллер прерываний настраивается на работу в одном из шести режимов:
1.Режим фиксированных приоритетов (Fixed Priority, Fully Nested Mode).
В этом режиме контроллер находится сразу после инициализации. Запросы прерываний имеют жесткие приоритеты от 0 до 7 (0 - высший) и обрабатываются в соответствии с приоритетами. Прерывание с меньшим приоритетом никогда не будет обработано, если в процессе обработки прерываний с более высокими приоритетами постоянно возникают запросы на эти прерывания.
2. Автоматический сдвиг приоритетов (Automatic Rotation). Режим циклической обработки прерываний.
В этом режиме дается возможность обработать прерывания всех уровней без их дискриминации. Например, после обработки прерывания уровня 4 ему автоматически присваивается низший приоритет, при этом приоритеты для всех остальных уровней циклически сдвигаются и прерывания уровня 5 будут иметь в данной ситуации высший приоритет и, следовательно, возможность быть обработанными.
3. Программно-управляемый сдвиг приоритетов (Specific Rotation).
Программист может сам передать команду циклического сдвига приоритетов ПКП, задав соответствующее управляющее слово. В команде задается номер уровня, которому требуется присвоить максимальный приоритет. После выполнения такой команды устройство работает так же, как и в режиме фиксированных приоритетов, с учетом их сдвига. Приоритеты сдвигаются циклически, таким образом если максимальный приоритет был назначен уровню 3, то уровень 2 получит минимальный и будет обрабатываться последним.
4 Автоматическое завершение обработки прерывания (Automatic End Of Interrupt, AEOI).
В обычном режиме работы процедура обработки аппаратного прерывания должна перед своим завершением очистить свой бит в ISR специальной командой, иначе новые прерывания не будут обрабатываться ПКП. В режиме AEOI нужный бит в ISR автоматически сбрасывается в тот момент, когда начинается обработка прерывания нужной процедурой обработки и от нее не требуется издавать команду завершения обработки прерывания (EOI). Сложность работы в данном режиме обуславливается тем, что все процедуры обработки аппаратных прерываний должны быть повторно входимыми, т. к. за время их работы могут повторно возникнуть прерывания того же уровня.
5. Режим специальной маски (Special Mask Mode).
Данный режим позволяет отменить приоритетное упорядочение обработки запросов и обрабатывать их по мере поступления. После отмены режима специальной маски предшествующий порядок приоритетов уровней сохранается.
6. Режим опроса (Polling Mode).
В этом режиме аппаратные прерывания не происходят автоматически. Появление запросов на прерывание должно определяться считыванием IRR. Данный режим позволяет так же получить от ПКП информацию о наличии запросов на прерывания и, если запросы имеются, номер уровня с максимальным приоритетом, по которому есть запрос

Программирование контроллера прерываний i8259A
Для вывода информации в ПКП используются 2 порта ввода-вывода. Порт с четным адресом (обычно это порт 20h) и порт с нечетным адресом (обычно 21h). Через эти порты могут быть переданы 4 слова инициализации (Initialization Control Word, ICW1 - ICW4), задающие режим работы ПКП, и 3 операционных управляющих слова (слова рабочих приказов, Operation Control Words, OCW1 - OCW3).
В порт с четным адресом выводятся ICW1, OCW2 и OCW3.
Порт с нечетным адресом используется для вывода ICW2, ICW3, ICW4 и OCW1. Неоднозначности интерпретации данных в этом случае так же не возникает, т. к. слова инициализации ICW2 - ICW4 должны непосредственно следовать за ICW1, выведенным в порт с четным адресом и выводить в промежутке между ними OCW1 не следует, оно не будет опознано контроллером.
Выводом в порт с четным адресом управляющего слова инициализации ICW1 начинается инициализация ПКП. В процессе инициализации контроллер последовательно принимает управляющие слова ICW1 - ICW4. При наличии в системе одного контроллера ICW3 не выводится. Наличие ICW4 определяется содержанием ICW1. При наличии каскада из нескольких ПКП каждый из них инициализируется отдельно.
Для инициализации и управления работой ведомого контроллера используются адреса A0h, A1h. В порт с адресом A0h выводятся ICW1, OCW2 и OCW3. Порт с адресом A1h используется для вывода ICW2, ICW3, ICW4 и OCW1.
При наличии в системе ведомого контроллера слово ICW3 для контроллеров ПКП обязательно.

Формат ICW1 следующий:
	Биты ICW1
	Назначение и содержание

	0
	1 – управляющее слово ICW4 будет присутствовать в данной последовательности приказов

	1
	0 – каскадное подключение ПКП (ICW3 будет в последовательности)
1 – одиночное подключение ПКП (ICW3 не будет)

	2
	0 – не используется

	3
	0 – прерывание по перепаду сигнала

	4
	1 – признак ICW1

	5..7
	0 – не используется

ICW2 – определение базового адреса:
	Биты ICW2
	Назначение и содержание

	0..2
	0 – не используется

	3..7
	Бит для задания номера базового вектора

Управляющее слово ICW2 задает номер вектора прерывания, процедуры обработки прерываний, для аппаратного прерывания irq0. Вектора обработки аппаратных прерываний располагаются последовательно с адреса 08h, загружаемого в начале работы процессора. Некорректное изменение номера вектора приведет к сбою всей системы.

Формат ICW3 для ведущего контроллера следующий:
	Биты ICW3
	Назначение и содержание

	0..7
	1- если ко входу irqN подключен ведомый
0- если ко входу irqN подключено внешнее устройство

Формат ICW3 для ведомого контроллера следующий:
	Биты ICW3
	Назначение и содержание

	0..3
	Задает номер уровня, на котором работает ведомый контроллер

	4..7
	0 – не используется

Формат ICW4:
	Биты ICW4
	Назначение и содержание

	0
	Тип микропроцессора: 0 – i8080; 1 – i80x86, Pentium

	1
	1- режим автоматического завершения обработки прерывания, описанный выше
0- действует обычное соглашение: процедура обработки аппаратного прерывания должна сама сбрасывать свой бит в ISR.

	2
	1 – данный контроллер ведущий,
0 - данный контроллер ведомый

	3
	1 – системная шина буферизована
0 - системная шина не буферизована

	4
	0 - устанавливает специальный вложенный режим, применяемый при каскадировании для определения приоритетов запросов от разных контроллеров (Special Fully Nested Mode)

	5..7
	0

В процессе работы с ПКП вы можете без переинициализации:
· маскировать и размаскировать аппаратные прерывания;
· изменять приоритеты уровней;
· издавать команду завершения обработки аппаратного прерывания;
· устанавливать/сбрасывать режим специальной маски;
· переводить контроллер в режим опроса и считывать состояние регистров ISR и IRR.
Для этого Вам потребуется вывести в порты ПКП одно из трех слов рабочих приказов OCW1 - OCW3.

Формат OCW1 – управление регистром масок IMR:
	Биты ОCW1
	Назначение и содержание

	0..7
	0 – разрешить прерывания уровня N
1 - запретить прерывания уровня N

Формат OCW2 – управление приоритетом:
	Биты ОCW2
	Назначение и содержание

	0..2
	000-nnn – код уровня запроса irq для действий, определяемых разрядами 5-7

	3..4
	00 – признак OCW2

	5
	0- режим автоматического EOI
1- режим неавтоматического EOI

	6..7
	Задают операцию в сочетании с 5-м битом:
000 – автоматический режим приоритетов с автоматическим EOI
001 – сброс бита с максимальным приоритетом в ISR
011 – сброс бита в ISR для уровня с кодом nnn
100 – установка режима циклической смены приоритета при автоматическом EOI
101 – установка режима циклической смены приоритета при неавтоматическом EOI
111 - установка режима циклической смены приоритета но относительно бита nnn

Формат OCW3 – общее управление контроллером:
	Биты ОCW3
	Назначение и содержание

	0..1
	10 – прочитать содержимое IRR (следующей командой из порта 020h);
11– прочитать содержимое ISR (следующей командой из порта 020h);
Содержимое IМR доступно постоянно как содержимое порта 021h.

	2
	1 - переводит контроллер в режим опроса

	3..4
	Признак OCW3

	5..6
	11 – установить режим специального маскирования
10 – сбросить режим специального маскирования
00 или 01 – ничего не менять

	7
	0

Распределение и приоритеты аппаратных прерываний в архитектуре АТ

	Уровень
	Контроллер
	Источник прерываний
	Приоритет уровня

	Irq0
	Ведущий
	Таймер
	2

	Irq1
	Ведущий
	Клавиатура
	3

	Irq2
	Ведущий
	Выход INT ведомого
	

	Irq8
	Ведомый
	Часы реального времени
	4

	Irq9
	Ведомый
	Вход для устройства расширения
	5

	Irq10
	Ведомый
	Вход для устройства расширения
	6

	Irq11
	Ведомый
	Вход для устройства расширения
	7

	Irq12
	Ведомый
	Вход для устройства расширения
	8

	Irq13
	Ведомый
	Ошибка сопроцессора
	9

	Irq14
	Ведомый
	Контроллер жесткого диска
	10

	Irq15
	Ведомый
	Вход для устройства расширения
	11

	Irq3
	Ведущий
	Вход для устройства расширения (последовательный порт СОМ2)
	12

	Irq4
	Ведущий
	Вход для устройства расширения (последовательный порт СОМ1)
	13

	Irq5
	Ведущий
	Вход для устройства расширения (параллельный порт LPT2)
	14

	Irq6
	Ведущий
	Контроллер гибкого диска
	15

	Irq7
	Ведущий
	Вход для устройства расширения (параллельный порт LPT1)
	16

Программирование контроллера прямого доступа памяти

Программирование контроллера ПДП

Цель работы:
Исследование принципа программного управления микросхемы, контроллера прямого доступа памяти (ПДП) i8237А с помощью ПК, исследование различных режимов работы ПДП.
Прямой доступ к памяти – DMA (Direct Memory Access) метод обмена данными периферийного устройства с памятью без участия процессора. В режиме прямого доступа к памяти процессор инициализирует контроллер прямого доступа к памяти – задает начальный адрес, счетчик и режим обмена, после чего освобождается. Сам обмен производит контроллером ПДП, что обеспечивает высокоскоростной обмен данными между устройствами ввода-вывода и ОЗУ без использования центрального процессора, это позволяет освободить процессор для выполнения вычислений параллельно с обменом и независимо от него. Наиболее часто возможности ПДП используются при работе с дисковыми накопителями, однако реализовано использование ПДП рядом других устройств. Ощутимые преимущества дает использование ПДП в процессе обмена с устройствами, принимающими или передающими данные достаточно большими порциями с высокой скоростью.
Четырехканальный контроллер ПДП i8237А имеет 16-разрядные регистры адреса и счетчики, что обеспечивает возможность программирования передачи блока данных размером до 64 Кбайт. Для обеспечения доступности адресного пространства памяти размером в 1 Мбайт применили внешние 4-разрядные регистры страниц DMA, отдельные для каждого канала. В этих регистрах хранятся биты адреса А[19:16], а битами А[15:0] управляет контроллер.
Микросхема i8237А допускает каскадирование при довольно гибком конфигурировании.

Принципы работы контроллера ПДП

В работе ПДП различаются 2 главных цикла: цикл ожидания (Idle cycle) и активный цикл (Active cycle). Каждый цикл подразделяется на ряд состояний, занимающих по времени один период времени (тик). Из цикла ожидания контроллер может быть переведен в состояние программирования (Program Condition) путем подачи на вход RESET сигнала высокого уровня, длительностью не менее 300 нc и следующей за ним подачи сигнала низкого уровня (уровня 0) на вывод CS (Chip Select). В состоянии программирования контроллер будет находится до тех пор, пока на выводе CS сохранится сигнал низкого уровня. В процессе программирования контроллеру задаются:
· начальный адрес памяти для обмена;
· уменьшенное на единицу число передаваемых байтов;
· направление обмена;
· требуемые режимы работы (разрешить или запретить циклическое изменение приоритетов, автоинициализацию, задать направление изменения адреса при обмене и т. д.).
Загрузка 16-разрядных регистров контроллера осуществляется через 8-разрядные порты ввода-вывода. Перед загрузкой первого (младшего) байта должен быть сброшен (очищен) триггер-защелка (триггер первый/последний, First/Last flip-flop), который изменяет свое состояние после вывода в порт первого байта и таким образом дает возможность следующей командой вывода в тот же порт загрузить старший байт соответствующего регистра.
Запрограммированный канал должен быть демаскирован (бит маски канала устанавливается при этом в 0), после чего он может принимать сигналы «Запрос на ПДП», генерируемые тем внешним устройством, которое обслуживается через этот канал. Сигнал «Запрос на ПДП» может быть также инициирован установкой в 1 бита запроса данного канала в регистре запросов контроллера. После появления сигнала запроса контроллер входит в активный цикл, в котором выполняется обмен данными. Обмен может осуществляется в одном из четырех режимов:
1. Режим одиночной передачи (Signle Transfer Mode).
После каждого цикла передачи контроллер освобождает шину процессору, но сразу же начинает проверку сигналов запроса и, как только обнаруживает активный сигнал запроса, инициирует следующий цикл передачи.
2. Режим блочной передачи (Block Transfer Mode).
В этом режиме наличие сигнала запроса требуется только до момента выдачи контроллером сигнала «Подтверждение запроса на ПДП» (DACK), после чего шина не освобождается вплоть до завершения передачи всего блока.
3. Режим передачи по требованию (Demand Transfer Mode).
Данный режим является промежуточным между двумя первыми: передача идет непрерывно до тех пор, пока активен сигнал запроса, состояние которого проверяется после каждого цикла передачи. Как только устройство не может продолжить передачу, сигнал запроса сбрасывается им и контроллер приостанавливает работу. Этот режим применяется для обмена с медленными устройствами, не позволяющими по своим временным характеристикам работать с ПДП в режиме блочной передачи.
4. Каскадный режим (Cascade Mode).
Режим позволяет включить в подсистему ПДП более одного контроллера в тех случаях, когда недостаточно четырех каналов ПДП. В этом режиме один из каналов ведущего контроллера используется для каскадирования с контроллером второго уровня. Для работы в каскаде сигнал HRQ («Запрос на захват») ведомого контроллера подается на вход DREG («Запрос на канал ПДП») ведущего, а сигнал DACK («Подтверждение запроса») ведущего подается на вход HDLA («Подтверждение захвата») ведомого.
Такая схема подключения аналогична подключению ведущего (первого) контроллера к микропроцессору, с которым он обменивается сигналами HRQ и HDLA.

Типы возможных режимов передач

1. Передача память-память (Memory-to-memory DMA)
Используется для передачи блока данных из одного места памяти в другое. Исходный адрес определяется в регистрах нулевого канала, выходной - в регистрах первого канала. Число циклов обмена (число байт минус 1) задается в регистре числа циклов канала 1. Передача происходит с использованием рабочего регистра контроллера в качестве промежуточного звена для хранения информации. При передачe память-память может быть задан специальный режим фиксации адреса (Address hold), при котором значение текущего адреса в регистре нулевого канала не изменяется, при этом весь выходной блок памяти заполняется одним и тем же элементом данных, находящимся по заданному адресу.
2. Автоинициализация (автозагрузка, Autoinitialization)
После завершения обычной передачи использованный канал ПДП маскируется и должен быть перепрограммирован для дальнейшей работы с ним. При автоинициализации маскировка канала после окончания передачи не происходит, а регистры текущего адреса и счетчик циклов автоматически загружаются из соответствующих регистров с начальными значениями. Таким образом для продолжения (повторения) обмена достаточно выставить сигнал запроса на ПДП по данному каналу.
3. Режим фиксированных приоритетов
В этом режиме канал 0 всегда имеет максимальный приоритет, а канал 3 - минимальный. Это означает, что любая передача по каналу с более высоким приоритетом будет выполняться раньше, чем по каналу с более низким приоритетом.
4. Циклический сдвиг приоритетов
Позволяет избежать «забивания» шины одним каналом при одновременной передаче по нескольким каналам. Каждому каналу, по которому прошла передача, автоматически присваивается низший приоритет, после чего право на передачу получает канал с наивысшим приоритетом, для которого передача в данный момент возможна. Таким образом, если в начале работы распределение приоритетов было обычным (канал 0 - наивысший), и пришли сигналы запроса на ПДП по 1-му и 2-му каналам, то сначала будет выполняться передача по первому каналу, затем он получит низший приоритет (а канал 2, соответственно, высший, т. к. сдвиг приоритетов циклический) и передача выполнится по 2-му каналу, который затем получит низший приоритет, а высший приоритет получит, соответственно, канал 3, который и будет обладать преимущественным правом на передачу.
5. Сжатие времени передачи (Compressed transfer timing).
В случае, если временные характеристики быстродействия обменивающихся устройств совпадают, ПДП может сократить время выполнения каждого такта передачи на 2 цикла часов за счет тактов ожидания, входящих в каждый цикл передачи.

Распределение каналов прямого доступа

Прямой доступ к памяти был использован еще в PC/XT, где для этого применялась микросхема четырехканального контроллера 8237А.
Из четырех каналов DMA XT на шине ISA доступны только три (1, 2 и 3). Канал 0 используется для регенерации динамической памяти, и от него на шину ISA выводится только сигнал подтверждения DACKO#, он же REFRESH#. Этот сигнал может использоваться для регенерации динамической памяти, если таковая используется на платах адаптера. Адрес регенерируемой строки берется с линий адреса шины ISA. Каналы 1, 2 и 3 обеспечивают побайтную передачу данных и называются 8-битными каналами DMA.
В архитектуре AT подсистему DMA расширили, добавив второй контроллер 8237А. Его подключили к шине адреса со смещением на 1 бит, и его 16-битные регистры адреса способны управлять линиями адреса А[1б:1], младший бит адреса АО всегда нулевой. Таким образом, второй контроллер может обеспечивать передачу данных только пословно (по два байта), за что его каналы и названы 16-битными. За один сеанс второй контроллер способен передать массив до 64К 16-разрядных слов. Регистры страниц для всех каналов DMA у AT расширены до 8 бит, что делает доступной для любого канала область памяти размером 16 Мбайт (0-FFFFFFh). Стандартное назначение каналов приведено в табл. 1.
Кроме увеличения числа каналов в AT ввели дополнительную возможность управления шиной ISA - Bus-Mastering - со стороны адаптера. Это внешнее управление шиной опирается на контроллер DMA, выполняющий в данном случае функции арбитра шины. Для получения управления шиной внешний Bus-Master посылает запрос по линии DRQx (только для каналов 5-7) и, получив подтверждение DACKx, устанавливает сигнал MASTERS. Теперь шиной ISA управляет он, но формально он не имеет права занимать шину больше чем на 15 мкс за сеанс. В противном случае нарушится регенерация памяти (позже собьется системное время, но при нарушении регенерации эти «мелочи» уже не важны). Интеллектуальный контроллер может выполнять более эффективные процедуры обмена, чем стандартный DMA, например:
Scatter Write — «разбросанная» запись в несколько блоков памяти.
Gather Read - чтение со сбором данных из нескольких блоков памяти.
Обмен нечетным количеством байт и (или) с нечетного адреса по 16-битному каналу.
Управление шиной используют высокопроизводительные адаптеры SCSI и локальных сетей, а также интеллектуальные графические адаптеры. Однако архитектурой шины доступное им пространство памяти ограничено областью 16 Мбайт, что по нынешним меркам маловато. «Заботливые» операционные системы (например, Novell NetWare) для таких адаптеров позволяют под буферы резервировать область в пределах младших 16 Мбайт.
На шине EISA DMA-каналы могут работать в 8-, 16- и 32-битном режиме, они могут использовать все 32 разряда шины адреса — иметь доступ ко всей памяти компьютера. Каждый канал может программироваться на 1 из 4 типов цикла передачи:
Compatible — полностью совместим с ISA.
Type A — сокращенный на 25% цикл: время одиночного цикла 875 нс, в блочном режиме время цикла 750 нс. Работает почти со всеми ISA-адаптерами с большей скоростью.
Type В - сокращенный на 50% цикл (750/500 нс на цикл), работает с большинством EISA-адаптеров и некоторыми ISA. Этот тип цикла возможен только с памятью, непосредственно доступной контроллеру шины EISA (памятью на адаптерах EISA, а также системной в случае, если EISA является основной шиной системной платы). Если декодированный адрес памяти относится к 8/16-битной памяти ISA, то контроллер DMA EISA автоматически переводится в режим Compatible.
Type С (Burst Timing) — сокращенный на 87,5% цикл, ориентированный на пакетный режим передач. Работает со скоростными EISA-адаптерами и при обмене 32-битных устройств с 32-битной памятью позволяет развивать скорость обмена до 33 Мбайт/с.
В PCI-системах для обмена с устройствами системной платы (Fast ATA-2 или E-IDE-порты) возможно использование DMA Type F, при котором между соседними циклами интервал может не превышать 3 тактов шины (360 нс). Для разгрузки системной шины используется дополнительный 4-байтный буфер. Режим F может работать только в режиме одиночной передачи или по запросу и только с инкрементом (увеличением) адреса. На самой шине PCI адаптеры могут использовать режим прямого управления шиной, для чего имеется специальный протокол арбитража, который к контроллерам DMA отношения уже не имеет.

Таблица 1. Стандартные каналы прямого доступа к памяти.
	Номер канала DMA#
	0
	1
	2
	3
	4
	5
	6
	7

	Стандартное назначение
	XT
	MRFR*
	-
	FDD
	HDD
	Отсутствуют

	
	AT
	-
	SDLC*
	FDD
	HDD*
	Каскад
	-
	-
	-

	Разрядность, байт
	1
	2 с четного адреса

	Макс. размер блока
	64 Кбайта
	128 Кбайт, четный

	Граница блоков
	Кратна 1000h
	Кратна 2000h

	Регистр страниц
	4 бит А16-А19
	7 бит А17-А23

	Адреса регистров:
	

	

	

	

	

	

	

	

	страниц
	087
	083
	081
	082
	08F
	08В
	089
	087

	нач. адреса (W)
текущ. адреса (R)
	000
	002
	004
	006
	0С0
	0С4
	0С8
	0СЕ

	нач. счетчика (W)
текущ. счетчика (R)
	001
	003
	005
	007
	0С2
	0С6
	0СА
	0СЕ

*SDLC-адаптер устанавливается редко.
HDD-контроллер в AT DMA обычно не использует.
Канал 0 в XT используется для регенерации памяти (MRFR).
Канал 4 доступен только в PS/2 МСА.

Программное управление контроллером ПДП

Программное управление контроллером ПДП осуществляется через порты ввода-вывода. Доступ к каждому регистру контроллера может быть осуществлен через свои порты ввода-вывода. Распределение адресов и описание внутренних регистров первого и второго контроллера ПДП приведено в таблице 2.

Таблица 2. Регистры контроллера ПДП 8237А.
	8237#1
	8237#2
	R/W
	Назначение регистров

	008h
	0D0h
	W
	Регистр команд (Command Register)
Биты: 7=1 – активный уровень DACK – высокий
6=1 – активный уровень DRQ – высокий
5=1 – режим расширенной записи
4=1 – циклический приоритет
3=1 – укороченный цикл обмена
2=1 – запрет работы контроллера
1=1 – фиксация адреса 0 канала
0=1 – передача память-память (в PC не используется)

	008h
	0D0h
	R
	Регистр состояния каналов (Status Register)
Биты 7..4 запросы каналов 0-3
Биты 3..0 завершение цикла каналов 0-3

	009h
	0D2h
	W
	Регистр запросов (Request Register)
Биты 7..3 – не используются
 2=1 – установка/ =0 – сброс бита запроса
 1..0 – выбор канала (00=0, 01=1, 10=2, 11=3)

	00Ah
	0D4h
	W
	Регистр маски - Single Mask Bit Register
Биты 7..3 – не используются
 2=1 – установка/ =0 – сброс бита маски
 1..0 – выбор канала (00=0, 01=1, 10=2, 11=3)

	00Bh
	0D6h
	W
	Регистр режима работы канала (Mode Register)
Биты 7..6 – режим передачи (00- по запросу, 01- одиночный, 10- блочный, 11- каскадирование)
 5=1 – инкремент / =0 – декремент адреса
 4=1 – разрешение автоинициализации
 3..2 – тип передачи (00- холостой, 01-запись, 01- чтение, 11- не исп.)
 1..0 – выбор канала (00=0, 01=1, 10=2, 11=3)

	00Ch
	0D8h
	W
	Сброс триггера младшего/старшего байта – Clear Byte Pointer Flip/Flop

	00Dh
	0DAh
	W
	Общий сброс 8237А - Master Clear (вывод любого байта в регистр вызывает сброс)

	00Eh
	0DCh
	W
	Общий сброс масок всех каналов – Clear Mask Register (вывод любого байта в регистр вызывает сброс)

	00Fh
	0DEh
	W
	Регистр масок всех каналов - All Mask Register Bits
Биты 7..4 – не используются
 3..0 – маски каналов 0-3 (0-канал разрешен, 1- маскирован)

	Регистры управления каналами второго контроллера

	-
	0C0h, 0C4h, 0C8h, 0CCh
	W
	Запись начального адреса в регистр начального адреса (Base Address Register) и регистр текущего адреса канала (Current Address Register) 4,5,6,7

	-
	0C0h, 0C4h, 0C8h, 0CCh
	R
	Чтение начального адреса из регистра начального адреса канала (Current Address Register) 4,5,6,7

	-
	0C2h, 0C6h, 0CAh, 0CEh
	W
	Запись в регистр начального счетчика циклов (Base Word Count Register) и в регистр текущего счетчика циклов канала (Current Word Count Register) 4,5,6,7

	-
	0C2h, 0C6h, 0CAh, 0CEh
	R
	 Чтение текущего значения из регистра текущего счетчика циклов канала (Current Word Count Register) 4, 5, 6, 7

	-
	089h, 08Bh, 08Ah, 08Fh
	W
	Задание номера страницы для канала 6,5,7,4

Каналы 4 - 7 предназначены для обмена 16-разрядными словами. В связи с этим возникает ряд отличий в работе с этими каналами:
- бит 0 в данных, заносимых в регистры начального и текущего адреса, всегда подразумевается равным 0, поэтому через эти регистры передаются биты 1 - 16 полного 23-разрядного адреса (а не биты 0 - 15 полного 20-разрядного адреса, как это реализовано на ХТ - подобных ПЭВМ). По этой же причине в страничные регистры каналов 4 - 7 заносятся биты 17 - 23 полного адреса, а не биты 16 - 23, как это надо сделать при работе с каналами 0 - 3;
- поскольку передача осуществляется 16-разрядными словами, в регистры текущего и начального счетчика циклов заносится не число байт, а число слов, уменьшенное на единицу;
- размеры страниц памяти, в пределах которых возможен обмен в течение одной передачи, составляют 2000h байтов.

Описание регистров

Регистр начального адреса (Base Address Register). В этом регистре задается стартовый адрес ОЗУ, с которого начинается передача. Регистр содержит 16 разрядов и определяет адрес внутри заданной страницы памяти размером 64К. Задание номера страницы памяти осуществляется через специальные страничные регистры (Page Registers), поддерживаемые внешней логикой.
Каждый канал ПДП имеет свой регистр начального адреса и страничный регистр. Такое деление памяти на страницы не позволяет осуществить обмен с блоком памяти, находящимся на пересечении двух страниц. Каждая страница начинается с сегментного адреса, кратного 1000h (0, 1000h, 2000h, ..., 9000h).

Регистр начального счетчика циклов (Base Word Count Register)
В этом регистре задается начальное число циклов передачи для программируемого канала. Фактическое число передаваемых во время работы ПДП элементов данных на единицу превышает заданное число циклов, т. е. если Вы задаете 100 циклов передачи, а размер элемента будет равен 1 байту, то за сеанс обмена будет передан 101 байт информации.
Регистр текущего адреса (Current Address Register)
Начальное значение заносится в этот регистр одновременно с регистром начального адреса. В дальнейшем в ходе передачи значение текущего адреса автоматически увеличивается или уменьшается (конкретное направление изменения задается при программировании в регистре режима). Если разрешена автоинициализация, то после окончания передачи в регистр автоматически устанавливается значение из регистра начального адреса.
Регистр текущего счетчика циклов (Current Word Count Register)
Регистр содержит текущее значение счетчика циклов (число оставшихся циклов передачи). Отображаемое в нем число циклов всегда на единицу меньше числа еще не переданных элементов данных, так как изменение значения в этом регистре производится в конце цикла передачи, уже после фактической передачи элемента данных, а конец передачи фиксируется в момент переполнения счетчика (изменение его значения с 0 на 0FFFFh).
Каждый из четырех каналов ПДП имеет свой набор регистров, описанных выше. Кроме того, имеется следующий набор регистров, общих для всех каналов.
Регистр режима (Mode Register)
Данный регистр задает режимы работы своего канала контроллера.
Регистр команд (Command Register).
Этот 8-битный регистр управляет работой контроллера. Он программируется, когда контроллер находится в состоянии программирования и очищается командами сброса «Reset» и «Master Clear».
Регистр состояния (Status Register)
Регистр отражает текущее состояние запросов и передач по всем четырем каналам. Биты 0 - 3 устанавливаются в единицу после завершения передачи по каналам 0 - 3 (бит 0 - канал 0, бит 1 - канал 1 и т.д.), если не задан режим автоинициализации. Эти биты очищаются после команды сброса контроллера и после каждой операции считывания состояния из регистра состояния. Биты 4 – 7 указывают по какому из каналов 0 - 3 активен в текущий момент сигнал запроса на ПДП.
Регистр масок (Mask Register)
Каждый бит этого 4-битового регистра маскирует/демаскирует свой канал ПДП, при этом значение 1 маскирует канал, значение 0 демаскирует канал и разрешает прием сигнала запроса по этому каналу.
Регистр запросов (Request Register)
Сигнал запроса на ПДП (DREQ) может быть издан как обслуживаемым устройством, так и программно. Для программного издания сигнала запроса по одному из 4-х каналов ПДП необходимо установить соответствующий бит в 4-разрядном регистре запросов. Запрос на ПДП может быть отменен записью нулевого значения в соответствующий бит регистра. Бит запроса очищается автоматически при окончании передачи по данному каналу. Все биты запросов очищаются при сбросе контроллера. Для того, чтобы воспринимать программные запросы на ПДП, канал должен находится в режиме блоковой передачи.

Литература

1. Уокерли Дж. Архитектура и программирование микроЭВМ: в 2-х кн./ пер. с англ. – М.: Мир, 1984.
2. Ассемблер. Юров. В. – СПб.: Питер, 2001. – 624 с.:ил.
3. [bookmark: _GoBack]Ассемблер: практикум. Юров. В. - СПб.: Питер, 2001. – 400 с.:ил.
image2.wmf
ах

oleObject1.bin

image1.png

