

СОДЕРЖАНИЕ

1. Задание.
2. Расчетно-пояснительная записка.
3. Аннотация.
4. Ведение.
5. Теория.
6. Алгоритмы.
7. Программы.
8. Инструкция пользователя.
9. Результаты экспериментов.
10. Заключение.

ЗАДАНИЕ
A. Выписать систему конечно-разностных уравнений.
B. Оценить вычислительные затраты, требуемые для выполнения аналитических решений с шестью десятичными цифрами в 100 и 1000 точках интервала. Определить и использовать разложение в ряд Тейлора для этих вычислений.
C. Оценить до проведения любых вычислений те вычислительные затраты, которые потребуются для решения конечно-разностных уравнений в 100 и 1000 точках при помощи:
1. Исключения Гаусса,
2. Итерационного метода Якоби,
3. Итерационного метода Гаусса-Зейделя.
D. Вычислить решения конечно-разностных уравнений при помощи каждого из трех методов из задания C.
E. Оценить применимость различных методов приближен-ного решения краевых задач для дифференциальных уравнений.

АННОТАЦИЯ
В данной работе по исследованию прямых и итерационных методов решения линейных систем, возникающих в краевых задачах для дифференциальных уравнений было составлено шесть программ непосредственно по алгоритмам Гаусса, Якоби, Гаусса-Зейделя. Каждый из методов был представлен в виде самостоятельной программы, которая имеет инструкцию для пользователя. Каждая программа работает по определенному управлению, причем программа Гаусса формирует матрицу сама, а в программах Якоби и Гаусса-Зейделя вводится только количество точек на интервал, исходя из чего формируется столбец неизвестных членов. Начальные значения неизвестных задаются автоматически на основе результатов, полученных в ходе исследования были сделаны соответствующие выводы.

ВВЕДЕНИЕ
Персональные компьютеры являются одним из самых мощных факторов развития человечества. Благодаря универсальности, высокому быстродействию, неутомимостью в работе, простоте в управлении PC нашли широкое применение в различных сферах деятельности человека.
С развитием научно-технического прогресса все большая часть задач требует решения на ЭВМ, поэтому наш курсовой проект направили на развитие не только определенных навыков логического мышления, но и способность развивать и закреплять эти навыки.

ТЕОРИЯ

Дискретизация обыкновенных дифференциальных уравнений конечными разностями приводит к линейным уравнениям; если рассматривается краевая задача, то уравнения образуют совместную линейную систему.

Прямым методом решения линейной системы называется любой метод, который позволяет получить решение с помощью конечного числа элементарных арифметических операций: сложения, вычитания, деления и т.д. Этот метод основан на сведении матрицы, системы A к матрице простой структуры - диагональной (и тогда решение очевидно) и треугольной - разработка эффективных методов решения таких систем. Например, если А является верхней треугольной матрицей:

;

решение отыскивается с помощью последовательных обратных подстановок. Сначала из последнего уравнения вычисляется , затем полученные значения подставляются в предыдущие уравнения и вычисляется и т.д.

; ;
или в общем виде:

 , i=n, n-1, ..., 1.

Стоимость такого решения составляет сложений умножений(а также и делении, которыми можно пренебречь).

Сведение матриц А к одному из двух указанных выше видов осуществляется с помощью ее умножения на специально подобранную матрицу М, так что система преобразуется в новую систему .
Во многих случаях матрицу М подбирают таким образом, чтобы матрица МА стала верхней треугольной.

Прямые методы решения СЛУ нельзя применять при очень больших, из-за нарастающих ошибок, округлениях, связанных с выполнением большого числа арифметических операций. Устранить эти трудности помогают итерационные методы. С их помощью можно получить, начиная с вектора , бесконечную последовательность векторов, сходящихся к решению системы(m- номер итерации)

 .

Метод является сходящимся, если это состояние справедливо для произвольного начального вектора .
Во всех методах, которые рассмотрены ниже, матрица А представляется в виде А=М-N (ниже показано, как это наполняется) и последовательно решаются системы

.
Формально решением системы является:

где - обратная матрица. Решение итерационным методом упрощается еще и потому, что на каждом шагу надо решать систему с одними и теми же матрицами. Очевидно, что матрица М должна быть легко обращаемой, а для получения желаемой точности надо выполнить определенное число итераций.
Критерием окончания итерационного процесса является соблюдение соотношения:

 или ,

где - вектор невязок уравнений , ии - допустимая погрешность СЛУ по неувязке или приращению вектора неизвестных на итерации.

РАЗНОСТНЫЕ УРАВНЕНИЯ

Многие физические системы моделируются дифферинци-альными уравнениями, например :

которые не могут быть решены аналитически. Приближение этих уравнений конечными разностями основано на дискредитации интервала [0,1] как показано на рис.1 и замене производной.

простой разностью, например :

где, 0,2=1/5=X4-X3.
Тогда аппроксимирующее разностное уравнение имеет вид:

В каждой точке дискретизации справедливо одно такое уравнение, которое приводит к линейной системе для приближенных значений решения дифференциального уравнения.
Уравнения такого вида можно решить с помощью разложения в ряд Тейлора. В нашем случае уравнения решенные разложением в ряд Тейлора имеют вид;

Найти

y’(0); y’’(0)=1; y’’’(0)=1;
обозначим у’(0) как С.
	Решение:

Решение:

	Система конечно-разностных уравнений

интервал [0,2] разделим на 10 точек

-2 1 0 0 0 0 0 0 0 0 		0.04

 1 -2 1 0 0 0 0 0 0 0 		0.04

 0 1 -2 1 0 0 0 0 0 0 		0.04

 0 0 1 -2 1 0 0 0 0 0 		0.04

 0 0 0 1 -2 1 0 0 0 0 		0.04

0 0 0 0 1 -2 1 0 0 0 		0.04

0 0 0 0 0 1 -2 1 0 0 		0.04

0 0 0 0 0 0 1 -2 1 0 		0.04

0 0 0 0 0 0 0 1 -2 1 		0.04

0 0 0 0 0 0 0 0 1 -2 	-2+0.04

5 точек.

	

	1
	0
	0
	0
	

	0

	1
	

	1
	0
	0
	

	0

	0
	1
	

	1
	0
	

	0

	0
	0
	1
	

	1
	

	0

	0
	0
	0
	1
	

	

	0

АЛГОРИТМ ГАУССА

Назначение: Решить относительно Х.

Входные параметры: masheps R, n Z,

Вектор правых частей .

Входно - выходные параметры ,

после разложения в А сохраняются ее верхние треугольные сомножители,.
Код возврата retcode=0 при успешном решении и retcode=1 при вырождении матрицы.

Выходные параметры: .
Алгоритм
1. retcode=0
2. if n=1 then
2.1 if A[1,1]=0 then retcode=1
2.2 return
(*Гауссово исключение с частичным выбором ведущего элемента*)
3. for k=1 to n do (*найти ведущий элемент*)
3.1 Amax <= |A[k,k]|
3.2 Imax <= k
3.3 for i=k+1 to n do
3.3.1 if |[i,k]| > Amax then
3.3.1.1. Amax <= |A[i,k]|
3.3.1.2. Imax <= 1
(*проверка на вырожденность*)
3.4. if Amax < masheps*n then
3.4.1. retcode<=1
3.4.2. return
3.5. if Imax<> k then
3.5.1. Amax <= A[Imax,k]
3.5.2. A[Imax,k] <= A[k,k]
3.5.3. A[Imax,k] <= Amax
3.7. for i=k+1 to n do A[i,k] <= A[i,k]/Amax
(*перестановка и исключение по столбцам*)
3.8. for j=k+1 to n do
3.8.1. Amax<=A[Imax,j]
3.8.2. A[Imax,j]<=A[k,j]
3.8.3. A[k,j]<=Amax
3.8.4. if Amax<>0 then
	for i=k+1 to n do
	A[i,j]<=A[i,j]-A[i,k]*Amax
4. if retcode=0 then (*разложение успешно*)
(*решить СЛУ Ly=b и Vx=y *)
5.
for i=2 to n do

6.
for k=n downto 1 do
return
end.

АЛГОРИТМ ЯКОБИ

Входные параметры: - вектор начальных значений Х, после окончания решения с заданной точностью.
Код возврата: retcode=0 при успешном решении u=1, при не успешном решении превышение допустимого числа итераций.

Память: Требуется дополнительный массив для хранения невязок.
Алгоритм
retcode=1
for Iter=1 to maxiter do (*расчет вектора невязок*)
rmax=0

for i=1 to n do

(*проверка на окончание итерационного процесса*)
if rmax<eps then do retcode=0
return
(*найти улучшенное решение*)
for i=1 to n do
x[i]=x[i]+r[i]/A[i,j]

АЛГОРИТМ ГАУССА-ЗЕЙДЕЛЯ

Входные параметры:
(релаксационный коэффициент)

- точность решения,
maxiter- максимальное число итераций.

Входно- выходные параметры: - вектор начальных значений X, после окончания; решение с заданной точностью.
Алгоритм
retcode=1
for iter=1 to maxiter do
rmax=0
(*улучшить решение*)
for i=1 to n do

(*проверка на окончание итерационного процесса*)
if rmax<eps then
retcode=0
return

program GAUS1(input,output);
type
	matrix=array[1..100,1..100] of real;
	vektor=array[1..100] of real;
var
	a:matrix;
	x,b,y:vektor;
	n:integer;
ret_code:integer;
procedure geradlini(var a:matrix;var b,y:vektor;var n:integer);
var
	s:real;j,i:integer;
begin
	for i:=1 to n do
	begin
		s:=0;
		for j:=1 to (i-1) do
		s:=s+a[i,j]*y[j];
		y[i]:=b[i]-s;
	end;
end;
procedure ruckgang(var a:matrix;var y,x:vektor;var n:integer);
var
	s:real;i,j:integer;
	begin
		s:=0;
		for i:=n downto 1 do
		begin
			s:=0;
			for j:=(i+1) to n do
			s:=s+a[i,j]*x[j];
			x[i]:=(y[i]-s)/a[i,i];
		end;
	end;
procedure vvod(var a:matrix;var b:vektor;var n:integer);
var
	i,j:integer;
	q:real;
begin
	writeln('Введите количество точек на интервал: ');
	readln(n);
	for i:=1 to n do
	begin
		for j:=1 to n do
		a[i,j]:=0;
		a[i,i]:=(-2);
	end;
	for i:=1 to (n-1) do
	a[i,i+1]:=1;
	for i:=2 to n do
	a[i,i-1]:=1;
	q:=sqr(2/n);
	for i:=1 to n do
	if i<>n then b[i]:=q else b[i]:=(q-2);
end;
procedure triangul(var a:matrix;var b:vektor;
var ret_code:integer;n:integer);
label 1;
var
	eps,buf,max,c:real;
	k,imax,i,j:integer;
begin
	ret_code:=1;
	eps:=1;
	buf:=1+eps;
	while buf>1.0 do
	begin
		eps:=eps/2;
		buf:=1+eps;
	end;
	buf:=n*eps;
	for k:=1 to (n-1) do
	begin
		max:=a[k,k];
		imax:=k;
		for i:=k to n do
		if a[i,k]>max then
		begin
			max:=a[i,k];
			imax:=i;
		end;
		if a[imax,k]>buf then
		begin
			for j:=1 to n do
			begin
				c:=a[imax,j];
				a[imax,j]:=a[k,j];
				a[k,j]:=c;
			end;
			c:=b[imax];
			b[imax]:=b[k];
			b[k]:=c;
			for i:=(k+1) to n do
			begin
				a[i,k]:=a[i,k]/a[k,k];
				for j:=(k+1) to n do
				a[i,j]:=a[i,j]-a[i,k]*a[k,j];
			end;
		end
		else
		begin
			ret_code:=0;
			goto 1
		end;
	1: end;
end;
procedure vivod(var x:vektor;var n:integer);
var
	i:integer;
begin
	for i:=1 to n do
	writeln('x',i:1,'=',x[i],' ');
end;
begin
	vvod(a,b,n);
	triangul(a,b,ret_code,n);
	if ret_code=1 then
	begin
		geradlini(a,b,y,n);
		ruckgang(a,y,x,n);
		vivod(x,n);
	end
	else
		writeln('Матрица вырожденна');
end.

program GAUS2(input,output);
type
	matrix=array[1..100,1..100] of real;
	vektor=array[1..100] of real;
var
	a:matrix;
	x,b,y:vektor;
	n:integer;
	ret_code:integer;
procedure geradlini(var a:matrix;var b,y:vektor;
var n:integer);
var
	s:real;j,i:integer;
begin
	for i:=1 to n do
	begin
		s:=0;
		for j:=1 to (i-1) do
		s:=s+a[i,j]*y[j];
		y[i]:=b[i]-s;
	end;
end;
procedure ruckgang(var a:matrix;var y,x:vektor;
var n:integer);
var
	s:real;i,j:integer;
begin
	s:=0;
	for i:=n downto 1 do
	begin
		s:=0;
		for j:=(i+1) to n do
		s:=s+a[i,j]*x[j];
		x[i]:=(y[i]-s)/a[i,i];
	end;
end;
procedure vvod(var a:matrix;var b:vektor;
var n:integer);
var
	i,j:integer;
	q:real;
begin
	writeln('Введите количество точек на интервал: ');
	readln(n);
	q:=(-2+sqr(0.5/n)*(sqr(4*arctan(1))/4));
	for i:=1 to n do
	begin
		for j:=1 to n do
		a[i,j]:=0;
		a[i,i]:=(q);
	end;
	for i:=1 to (n-1) do
	a[i,i+1]:=1;
	for i:=2 to n do
	a[i,i-1]:=1;
	for i:=1 to n do
	if i<>n then b[i]:=0 else b[i]:=(-sqr(2)/2);
end;
procedure triangul(var a:matrix;var b:vektor;var ret_code:integer;
n:integer);
label 1;
var
	eps,buf,max,c:real;
	k,imax,i,j:integer;
begin
	ret_code:=1;
	eps:=1;
	buf:=1+eps;
	while buf>1.0 do
	begin
		eps:=eps/2;
		buf:=1+eps;
	end;
	buf:=n*eps;
	for k:=1 to (n-1) do
	begin
		max:=a[k,k];
		imax:=k;
		for i:=k to n do
		if a[i,k]>max then
		begin
			max:=a[i,k];
			imax:=i;
		end;
		if a[imax,k]>buf then
		begin
			for j:=1 to n do
			begin
				c:=a[imax,j];
				a[imax,j]:=a[k,j];
				a[k,j]:=c;
			end;
			c:=b[imax];
			b[imax]:=b[k];
			b[k]:=c;
			for i:=(k+1) to n do
			begin
				a[i,k]:=a[i,k]/a[k,k];
				for j:=(k+1) to n do
				a[i,j]:=a[i,j]-a[i,k]*a[k,j];
			end;
		end
		else
		begin
			ret_code:=0;
			goto 1
		end;
1:	end;
end;
procedure vivod(var x:vektor;var n:integer);
var i:integer;
begin
	for i:=1 to n do
	writeln('x',i:1,'=',x[i]);
end;
begin
	vod(a,b,n);
	triangul(a,b,ret_code,n);
	if ret_code=1 then
	begin
		geradlini(a,b,y,n);
		ruckgang(a,y,x,n);
		vivod(x,n);
	end
	else
		writeln('Матрица вырождена ');
end.

program jakobi1(input,output);
type
	vektor=array[1..100] of real;
var
	r,y:vektor;
	z,ret_code,maxiter:integer;
	eps:real;

procedure vvod(var z,maxiter:integer;var eps:real);
begin
	writeln('Введите кол-во точек на интервал');
	readln(z);
	writeln('Введите точность');
	readln(eps);
	writeln('Введите кол-во итераций');
	readln(maxiter);
end;

procedure ren(var r,y:vektor;var z,ret_kode,maxiter:integer;var eps:real);
label 1;
var
	iter,i:integer;
	rmax,q:real;
begin
	q:=sqr(2/z);

	for i:=1 to z do
		y[i]:=1;
	ret_code:=0;

	for iter:=1 to maxiter do {c.1}
	begin
		rmax:=0;
		for i:=1 to z do {c.2}
		begin
			if i=1 then
			begin
				r[i]:=q-(-2*y[1]+y[2]);
				if rmax<abs(r[i]) then
					rmax:=abs(r[i]);
			end;
			if i=z then
			begin
				r[z]:=(-2+q)-(y[z-1]-2*y[z]);
				if rmax<abs(r[i]) then
					rmax:=abs(r[i]);
			end;
			if(i<>1)and(i<>z) then
			begin
				r[i]:=q-(y[i-1]-2*y[i]+y[i+1]);
				if rmax<abs(r[i]) then
					rmax:=abs(r[i]);
			end;
		end;{c.2}
		if rmax<=eps then
			goto 1
		else
			for i:=1 to z do
				y[i]:=y[i]+r[i]/(-2);
	end; {c.1}
	ret_code:=1;
1:
end;

procedure vivod(var y:vektor;var z:integer);
var
	i:integer;
	ch:char;
begin
	for i:=1 to z do
	writeln('y',i:1,y[i]);
end;

begin
	vvod(z,maxiter,eps);
	ren(r,y,z,ret_code,maxiter,eps);
	if ret_code=0 then
		vivod(y,z)
	else
		writeln('Превышено допустимое число итераций');
end.

program jakobi2(input,output);
type
	vektor=array[1..100] of real;
var
	r,y:vektor;
	z,ret_code,maxiter:integer;
	eps:real;
procedure vvod(var z,maxiter:integer;var eps:real);
begin
	writeln('Введите кол-во точек на интервал');
	readln(z);
	writeln('Введите точность');
	readln(eps);
	writeln('Введите кол-во итераций');
	readln(maxiter);
end;
procedure ren(var r,y:vektor;var z,ret_kode,maxiter:integer;var eps:real);
label 1;
var
	iter,i:integer;
	rmax,q:real;
begin
	q:=sqr(2/z);
	for i:=1 to z do
	y[i]:=1;
	ret_code:=0;
	for iter:=1 to maxiter do
	begin
		rmax:=0;
		for i:=1 to z do
		begin
			if i=1 then
			begin
				r[i]:=q-(-2*y[1]+y[2]);
				if rmax<abs(r[i]) then
				rmax:=abs(r[i]);
			end;
			if i=z then
			begin
				r[z]:=(-2+q)-(y[z-1]-2*y[z]);
				if rmax<abs(r[i]) then
				rmax:=abs(r[i]);
			end;
			if(i<>1)and(i<>z) then
			
begin
				r[i]:=q-(y[i-1]-2*y[i]+y[i+1]);
				if rmax<abs(r[i]) then rmax:=abs(r[i]);
			end;
		end;
		if rmax<=eps then goto 1
		else
			for i:=1 to z do
			y[i]:=y[i]+r[i]/q;
	end;
	ret_code:=1;
1:end;
procedure vivod(var y:vektor;var z:integer);
var
	i:integer;
begin
	for i:=1 to z do
	writeln('y',i:1,y[i]);
end;

begin
	vvod(z,maxiter,eps);
	ren(r,y,z,ret_code,maxiter,eps);
	if ret_code=0 then vivod(y,z)
	else
		write('Превышено допустимое число итераций');
end.

program zeidel1(input,output);
type
	vector=array[1..1000] of real;
var
	y:vector;
	z,retcode,maxiter:integer;
	eps:real;
procedure wod(var z,maxiter:integer;var eps:real);
begin
	writeln;
	writeln('введите количество точек на интервал ');
	readln(z);
	writeln('введите точность ');readln(eps);
	writeln('введите количество итераций ');readln(maxiter);
	writeln('коофицент релаксации W,принят равный 1');
end;
procedure reshen(var y:vector;var z,retcode,maxiter:integer;var eps:real);
label 1;
var
	Iter,I:integer;R,Rmax,Q:real;
begin
	Q:=sqr(2/z);
	for i:=1 to z do y[i]:=1;
	retcode:=1;
	for Iter:=1 to maxiter do
	begin
		Rmax:=0;
		for i:=1 to z do
		begin
			if i=1 then
			begin
				R:=Q-(-2*y[1]+y[2]);
				if Rmax<Abs(R) then Rmax:=abs(R);
				y[i]:=y[i]+R/(-2);
			end;
			if i=z then
			begin
				R:=(-2+Q)-(y[z-1]-2*y[z]);
				if Rmax<ABS(R) then Rmax:=ABS(R);
				y[i]:=y[i]+r/(-2);
			end;
			if (I<>1) and (i<>z) then
			begin
				r:=Q-(y[i-1]-2*y[i]+y[i+1]);
				if Rmax<abs(r) then Rmax:=abs(r);
				y[i]:=y[i]+R/-2;
			end;
		end;
		if Rmax<=eps then
		begin
			retcode:=0;
			goto 1;
		end;
	end;
1: end;
procedure vivod(var y:vector;var z:integer);
var
	i:integer;
begin
	for i:=1 to z do
	write('y',i:2,'=',y[i]);
end;
begin

	wod(z,maxiter,eps);
	reshen(y,z,retcode,maxiter,eps);
	if retcode=0 then vivod(y,z)
	else
		write('число итераций');
end.

program zeidel2(input,output);
type
	vector=array[1..1000] of real;
var
	y:vector;
	z,retcode,maxiter:integer;
	eps:real;
procedure wod(var z,maxiter:integer;var eps:real);
begin
	writeln;
	writeln('введите количество точек на интервал ');
	readln(z);
	writeln('введите точность ');readln(eps);
	writeln('введите количество итераций ');readln(maxiter);
	writeln('коофицент релаксации W,принят равный 1');
end;
procedure reshen(var y:vector;var z,retcode,maxiter:integer;var eps:real);
label 1;
var
	Iter,I:integer;R,Rmax,Q:real;
begin
	Q:=(-2+sqr(0.5/z)*sqr(4*arctan(1))/4);
	for i:=1 to z do y[i]:=1;
	retcode:=1;
	for Iter:=1 to maxiter do
	begin
		Rmax:=0;
		for i:=1 to z do
		begin
			if i=1 then
			begin
				r:=-(q*y[1]+y[z]);
				if Rmax<Abs(R) then Rmax:=abs(R);
				y[i]:=y[i]+R/q;
			end;
			if i=z then
			begin
				r:=-sqrt(z)/2-(y[z-1]+q*y[z]);
				if Rmax<ABS(R) then Rmax:=R;
				y[i]:=y[i]+r/q;
			end;
			if (I<>1) and (i<>z) then
			begin
				r:=-(y[i-1]+q*y[i]+y[i+1]);
				if Rmax<abs(r) then Rmax:=r;
				y[i]:=y[i]+R/q;
			end;
		end;
		if Rmax<=eps then
		begin
			retcode:=0;
			goto 1;
		end;
	end;
1: end;
procedure vivod(var y:vector;var z:integer);
var
	i:integer;
begin
	for i:=1 to z do
	writeln (i:1,'=',y[i],);
end;
begin
	wod(z,maxiter,eps);
	reshen(y,z,retcode,maxiter,eps);
	if retcode=0 then vivod(y,z)
	else
		write('число итераций');
end.

ИНСТРУКЦИЯ ДЛЯ ПОЛЬЗОВАТЕЛЯ

	Программа Jacobi1 предназначена для решения уравнений . Jacobi2 для решения уравнений ,методом конечных разностей находят значение в точках интервала (0.2) максимальное количество точек на интервал 1000. Используется массив для хранения значений вектора невязок . В процедуре reshen находится вектор невязок r [i]. Для первого и последнего уравнения системы находят вектора невязок различными способами. Для остальных уравнений системы вектор невязок находится одинаково. Сама матрица не формируется , т.е. для нахождения вектора невязок ее не нужно, это видно из текста программы.

Программы Zeidel1 и Zeidel2, также решают уравнения и . Отличия от Jacobi состоит только в том, что отсутствует массив для вектора невязок. Программы Gaus1 и Gaus2 также решают эти уравнения, только методом Гаусса. В процедурах vvod задается количество точек на интервал(max=100) и формируются матрицы в зависимости от уравнения. Процедура triangul разлагает матрицу А на две треугольные. Процедура geradlini- прямой ход метода Гаусса. Процедура ruckgang- обратный ход. Процедура vivod- выводит значения .

Вычисление уравнений с помощью итерационного метода Якоби требует времени t=0(maxiter Z), где Z- количество точек на интервал, а maxiter- количество итераций.

Вычисление уравнений с помощью метода Гаусса требует времени t=0(), где N- количество точек на интервал.
Решение с помощью метода Гаусса требует больше времени чем решения другими двумя приведенными способами.
[bookmark: _GoBack]
oleObject2.bin

image46.wmf
y

7

oleObject49.bin

image47.wmf
y

8

oleObject50.bin

image48.wmf
y

9

oleObject51.bin

image49.wmf
y

10

oleObject52.bin

image50.wmf
¢

¢

+

=

=

=

y

y

y

y

p

2

0

5

4

0

0

5

2

2

1

2

;

;

(0

.

)

;

(0

,

)

oleObject53.bin

oleObject3.bin

image51.wmf
y

y

y

y

i

i

i

i

-

+

-

+

+

´

=

1

1

2

2

0

01

4

0

.

p

oleObject54.bin

image52.wmf
-

+

2

0

01

4

2

.

p

oleObject55.bin

image53.wmf
y

1

oleObject56.bin

oleObject57.bin

image54.wmf
y

2

oleObject58.bin

oleObject59.bin

image3.wmf
x

n

image55.wmf
y

3

oleObject60.bin

oleObject61.bin

image56.wmf
y

4

oleObject62.bin

oleObject63.bin

image57.wmf
y

5

oleObject64.bin

oleObject65.bin

image58.wmf
Î

oleObject4.bin

oleObject66.bin

oleObject67.bin

image59.wmf
b

R

n

Î

oleObject68.bin

image60.wmf
A

R

n

n

Î

1

oleObject69.bin

image61.wmf
L

R

n

n

Î

1

oleObject70.bin

image62.wmf
V

R

n

n

Î

1

oleObject71.bin

image4.wmf
x

n

-

1

image63.wmf
X

R

n

Î

oleObject72.bin

image64.wmf
x

k

x

k

A

k

j

x

j

j

k

[

]

[

]

(

[

,

]

[

])

£

-

´

å

=

-

1

1

oleObject73.bin

image65.wmf
x

k

x

k

A

k

j

x

j

A

k

k

j

k

n

[

]

(

[

]

(

[

,

]

[

]))

/

[

,

]

£

-

´

å

=

+

1

oleObject74.bin

oleObject75.bin

image66.wmf
r

R

n

Î

oleObject76.bin

image67.wmf
r

i

b

i

A

i

j

x

j

d

N

[

]

[

]

[

,

]

[

]

=

-

´

=

å

1

oleObject5.bin

oleObject77.bin

image68.wmf
r

d

r

r

i

max

max

max,

|

[

]|

=

=

ì

í

î

ü

ý

þ

1

oleObject78.bin

image69.wmf
n

Z

w

Î

Î

,

[0

,

]

2

oleObject79.bin

image70.wmf
A

R

B

R

eps

R

n

n

n

Î

Î

Î

,

,

,

oleObject80.bin

image71.wmf
X

R

n

Î

oleObject81.bin

image72.wmf
r

b

i

A

i

j

x

j

r

r

r

x

i

x

j

wr

A

i

i

j

n

=

-

´

=

=

+

=

å

[

]

[

,

]

[

]

max

max{

max,|

|

}

[

]

[

]

/

[

,

]

1

image5.wmf
X

b

a

n

n

nn

=

oleObject82.bin

image73.wmf
¢

¢

=

y

1

oleObject83.bin

image74.wmf
¢

¢

=

y

1

oleObject84.bin

image75.wmf
¢

¢

+

=

y

y

p

2

4

0

oleObject85.bin

image76.wmf
y

x

i

(

)

oleObject86.bin

image77.wmf
R

i

oleObject6.bin

oleObject87.bin

oleObject88.bin

oleObject89.bin

image78.wmf
y

x

i

(

)

oleObject90.bin

image79.wmf
N

3

oleObject91.bin

image6.wmf
(

)

X

a

n

bn

an

n

Xn

n

n

-

=

-

-

-

´

-

-

1

1

1

1

1

,

,

oleObject7.bin

image7.wmf
(

)

X

b

a

X

a

X

a

i

i

i

i

i

in

n

ii

=

-

+

-

-

+

,

.

.

.

1

1

oleObject8.bin

image8.wmf
n

2

2

oleObject9.bin

oleObject10.bin

image9.wmf
MA

x

M

b

=

oleObject11.bin

image10.wmf
r

x

(

)

0

oleObject12.bin

image11.wmf
(

)

x

m

oleObject13.bin

image12.wmf
m

D

m

m

U

x

x

®

=

r

r

(

)

oleObject14.bin

oleObject15.bin

image13.wmf
M

x

N

x

b

m

m

r

r

r

(

)

(

)

+

=

+

1

oleObject16.bin

image14.wmf
r

r

r

x

M

N

x

M

b

m

m

(

)

(

)

+

-

-

=

+

1

1

1

oleObject17.bin

image15.wmf
M

-

1

oleObject18.bin

image16.wmf
r

m

r

£

e

oleObject19.bin

image17.wmf
r

r

x

x

m

m

x

(

)

(

)

+

-

£

1

e

oleObject20.bin

image18.wmf
r

m

oleObject21.bin

image19.wmf
r

r

r

r

A

x

b

m

m

=

+

-

(

)

1

oleObject22.bin

image20.wmf
e

r

oleObject23.bin

image21.wmf
e

x

oleObject24.bin

image22.wmf
d

y

dx

x

y

x

y

y

y

2

2

0

1

1

+

=

+

=

=

cos(

)

log(

),

(0

)

,

(

)

oleObject25.bin

image23.wmf
x

0

0

=

oleObject26.bin

image24.wmf
x

1

oleObject27.bin

image25.wmf
x

2

oleObject28.bin

image26.wmf
x

3

oleObject29.bin

image27.wmf
x

4

oleObject30.bin

image28.wmf
x

5

oleObject31.bin

image29.wmf
x

6

1

=

oleObject32.bin

image30.wmf
d

y

dx

y

x

y

x

y

x

2

2

2

3

4

2

2

2

=

-

+

(

)

(

)

(

)

(0

.

)

oleObject33.bin

image1.wmf
A

x

b

=

image31.wmf
y

x

y

x

y

x

x

y

x

x

i

i

i

i

i

i

i

(

)

(

)

(

)

(0

.

)

log(

)

(

)

log(

),

,

-

+

+

-

+

+

=

=

1

4

2

4

2

2

1

4

oleObject34.bin

image32.wmf
y

y

y

n

=

=

=

1

0

0

2

2

;

(

)

;

(

)

;

oleObject35.bin

image33.wmf
y

n

(

)

;

0

0

=

oleObject36.bin

image34.wmf
y

x

y

y

x

y

x

y

n

x

C

x

y

x

C

x

y

C

C

C

C

y

x

x

y

y

y

y

n

n

x

x

(

)

(0

)

(0

)

!

(0

)

!

.

.

.

(0

)

!

;

(

)

;

(2

)

;

(

)

;

;

(0

)

;

(0

.

)

=

+

¢

+

¢

¢

+

+

=

=

+

+

=

+

=

´

+

=

´

+

=

=

=

=

¢

¢

+

=

=

=

1

2

0

2

2

2

2

2

2

2

2

2

2

0

0

2

4

0

0

5

2

2

2

2

2

2

2

2

p

oleObject37.bin

image35.wmf
¢

¢

=

-

=

¢

¢

¢

=

-

¢

¢

=

=

-

¢

¢

¢

=

-

¢

¢

=

=

-

=

-

-

=

-

=

-

-

+

-

+

-

+

-

y

y

y

y

y

y

y

y

y

c

y

c

y

c

y

c

y

x

Cx

Cx

Cx

Cx

n

n

(0

)

(0

)

(0

)

(0

)

;

;

(

)(

)

;

(

)

(

)

(

)

!

(

)

!

(

)

!

.

.

.

(

)

(

)

(

)

(

)

p

p

p

p

p

p

p

p

p

p

p

2

2

2

2

2

2

2

2

2

2

2

4

0

4

0

4

4

4

4

4

4

4

3

4

5

4

7

2

3

5

7

3

3

2

5

3

7

oleObject38.bin

oleObject1.bin

image36.wmf
2

2

0

5

4

5

3

4

5

5

4

5

7

2

2

1

2

2

1

2

3

2

1

2

5

2

1

2

7

2

3

2

2

5

2

3

7

2

2

3

2

4

5

2

6

7

=

-

+

æ

è

ç

ö

ø

÷

-

æ

è

ç

ö

ø

÷

+

æ

è

ç

ç

ç

ç

ç

ö

ø

÷

÷

÷

÷

÷

=

-

æ

è

ç

ö

ø

÷

æ

è

ç

ö

ø

÷

+

æ

è

ç

ö

ø

÷

æ

è

ç

ö

ø

÷

-

æ

è

ç

ö

ø

÷

æ

è

ç

ö

ø

÷

+

æ

è

ç

ç

ç

C

C

.

(0

.

)

!

(0

.

)

!

(0

.

)

!

.

.

.

!

!

!

.

.

.

p

p

p

p

p

p

ç

ç

ö

ø

÷

÷

÷

÷

÷

=

=

=

-

´

æ

è

ç

ö

ø

÷

+

´

æ

è

ç

ö

ø

÷

-

´

æ

è

ç

ö

ø

÷

+

æ

è

ç

ç

ç

ç

ö

ø

÷

÷

÷

÷

=

=

=

=

=

-

æ

è

ç

ö

ø

÷

+

æ

è

ç

ö

ø

÷

-

æ

è

ç

C

C

C

y

x

C

x

x

x

2

2

1

2

2

2

1

2

3

2

1

2

5

2

1

2

7

2

4

2

2

2

4

2

4

4

2

2

2

3

2

5

3

5

7

3

3

5

5

p

p

p

p

p

p

p

p

p

p

p

p

p

p

!

!

!

.

.

.

sin

;

/

sin

sin

;

(

)

!

!

.

.

.

ç

ç

ç

ö

ø

÷

÷

÷

÷

=

æ

è

ç

ö

ø

÷

=

=

=

=

´

=

y

x

C

x

C

y

x

x

x

(

)

sin

;

sin

;

(

)

sin(

)

sin(

)

2

2

2

4

4

2

4

2

2

2

2

2

2

2

p

p

p

p

p

p

p

p

p

p

oleObject39.bin

image37.wmf
y

x

x

x

(

)

sin

sin

=

´

æ

è

ç

ö

ø

÷

=

æ

è

ç

ö

ø

÷

2

2

2

2

p

p

p

p

oleObject40.bin

image38.wmf
¢

¢

=

=

=

=

y

y

y

y

x

x

1

0

2

2

2

;

(0

)

;

(2

)

;

(

)

;

oleObject41.bin

image39.wmf
y

x

y

x

y

x

y

x

y

y

y

y

y

y

y

y

y

y

y

y

y

i

i

i

i

i

i

i

i

(

)

(

)

(

)

(0

.

)

(

)

;

;

;

.

.

.

.

-

+

-

+

-

+

=

=

=

=

-

+

=

-

+

=

-

+

=

-

-

=

1

1

2

0

10

1

1

1

2

1

2

3

8

9

2

2

1

0

2

2

0

04

2

0

04

2

0

04

2

2

0

04

oleObject42.bin

image40.wmf
y

1

oleObject43.bin

image2.wmf
A

a

a

a

a

a

a

a

n

n

nn

=

æ

è

ç

ç

ç

ç

ç

ç

ö

ø

÷

÷

÷

÷

÷

÷

11

21

1

22

21

3

0

0

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

image41.wmf
y

2

oleObject44.bin

image42.wmf
y

3

oleObject45.bin

image43.wmf
y

4

oleObject46.bin

image44.wmf
y

5

oleObject47.bin

image45.wmf
y

6

oleObject48.bin

