[bookmark: _Toc156618212]
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
(ДГТУ)

Кафедра ______ИНФОРМАТИКА_________

УТВЕРЖДАЮ

Зав. кафедрой

___________Соболь Б.В.

"______"________2010 г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовой работе __________по «Информатике»_______________________________
(наименование учебной дисциплины)

на тему:__

Автор работы _________________ ___

Специальность__

Обозначение курсовой работы ____________________Группа_____________________

Руководитель проекта____________________ 	_______________________________
(подпись)				(Ф.И.О.)

Работа защищена _______________________	_______________________________
(дата)			 		(оценка)

Члены комиссии ________________________	_______________________________
(подпись)				(Ф.И.О)
____________________________	 ______________________________
(подпись)				(Ф.И.О)

Ростов-на-Дону
2010
Тема: «Операционные системы. Управление памятью. Ввод-вывод»

Содержание

Введение………………………………………………………………………………3
1. Операционные системы………………………………………………………….4
1.1 Файловая система……………………………………………………………….5
1.1.1 Классификация файловых систем………………………………………….6
1.1.2 Задачи файловой системы…………………………………………………..7
1.2 Структура и состав операционной системы………………………………..11
1.3 Защищенные подсистемы……………………………………………………..12
2. Управление памятью…………………………………………………………….14
3. Ввод-вывод………………………………………………………………………...17
Заключение……………………………………………………………………………20
Список литературы…………………………………………………………………..21

Введение

Операционная система (ОС) неотъемлемая часть программного обеспечения компьютера, управляющая всеми его аппаратными компонентами. Другими словами, ОС обеспечивает целостное функционирование всех компонентов компьютера, а также предоставляет пользователю доступ к аппаратным возможностям компьютера. Состав и структуру ОС составляют следующие модули:
базовый модуль (ядро ОС) управляет работой программ и файловой системой, обеспечивает доступ к ней и обмен файлами между периферийными устройствами;
командный процессор расшифровывает и исполняет команды пользователя, поступающие, прежде всего через клавиатуру;
драйверы периферийных устройств программно обеспечивают согласованность работы этих устройств с процессором (каждое периферийное устройство обрабатывает информацию по-разному и в различном темпе);
дополнительные сервисные программы (утилиты) делают удобным и многосторонним процесс общения пользователя с компьютером.
Файлы, составляющие ОС, хранятся на диске, поэтому система называется дисковой операционной (ДОС). Известно, что для их выполнения программы и, следовательно, файлы ОС должны находиться в оперативной памяти (ОЗУ). Однако, чтобы произвести запись ОС в ОЗУ, необходимо выполнить программу загрузки, которой сразу после включения компьютера в ОЗУ нет. Выход из этой ситуации состоит в последовательной, поэтапной загрузке ОС в оперативную память.
Существует несколько наиболее распространенных ОС, каждая из которых ориентирована на определенную разрядность процессора, тип процессора, а также емкость ОЗУ. По мере расширения возможностей компьютера требуются все более мощные и современные программные средства для использования этих ресурсов пользователями. Такими качествами обладают, в частности, ОС фирмы Microsoft.

1. Операционные системы

Для операционных систем существует набор базовых понятий, таких как процессы, память и файлы, которые являются самыми важными для понимания общей идеи построения и функционирования ОС.
Ключевое понятие ОС - процесс. С каждым процессом связывается его адресное пространство – список адресов в памяти от некоторого минимума до некоторого максимума. По этим адресам процесс может занести информацию и прочесть ее. Адресное пространство содержит саму программу, данные к ней и ее стек. Со всяким процессом связывается некий набор регистров, включая счетчик команд, указатель стека и другие аппаратные ресурсы, а также вся информация, необходимая для запуска программы. Чтобы лучше разобраться в понятии процесса, проведем аналогию с системой, работающей в режиме разделения времени. Предположим, ОС решает остановить работу одного процесса и запустить другой, потому что первый израсходовал отведенную для него часть рабочего времени ЦП. Позже остановленный процесс должен быть запущен снова из того же состояния, в каком его остановили. Следовательно, всю информацию о процессе нужно где-либо сохранить. Так, процесс может иметь несколько одновременно открытых для чтения файлов. Связанный с каждым файлом указатель дает текущую позицию, т.е. номер байта или записи, которые будут прочитаны после повторного запуска процесса. При временном прекращении действия процесса все указатели нужно сохранить так, чтобы команда чтения, выполненная после возобновления процесса, прочла правильные данные. Во многих ОС вся информация о каждом процессе хранится в таблице операционной системы. Эта таблица называется таблицей процессов и представляет собой связанный список структур, по одной на каждый существующий в данный момент процесс.
В каждом компьютере есть оперативная память, используемая для хранения исполняемых программ. В простых ОС в конкретный момент времени в памяти может находиться только одна программа. Более сложные системы позволяют одновременно хранить в памяти несколько программ. Для того чтобы они не мешали друг другу, необходим защитный механизм. Этот механизм управляется операционной системой.
Другой важный, связанный с памятью вопрос — управление адресным пространством процессов. Обычно под каждый процесс отводится некоторое множество адресов, которые он может использовать. В простейшем случае, когда максимальная величина адресного пространства для процесса меньше оперативной памяти, процесс заполняет свое адресное пространство, и памяти хватает на то, чтобы содержать его целиком. Однако, что произойдет, если адресное пространство процесса окажется больше, чем ОЗУ компьютера, а процесс захочет использовать его целиком? В этом случае используется метод, называемый виртуальной памятью, при котором ОС хранит часть адресов в оперативной памяти, а часть на диске и меняет их местами при необходимости. Управление памятью — важная функция операционной системы.

1.1 Файловая система

Файловая система (англ. file system) — регламент, определяющий способ организации, хранения и именования данных на носителях информации. Она определяет формат физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имени файла (папки), максимальный возможный размер файла и раздела, набор атрибутов файла. Некоторые файловые системы предоставляют сервисные возможности, например, разграничение доступа или шифрование файлов.
Файловая система связывает носитель информации с одной стороны и API для доступа к файлам — с другой. Когда прикладная программа обращается к файлу, она не имеет никакого представления о том, каким образом расположена информация в конкретном файле, так же, как и на каком физическом типе носителя (CD, жёстком диске, магнитной ленте или блоке флеш-памяти) он записан. Всё, что знает программа — это имя файла, его размер и атрибуты. Эти данные она получает от драйвера файловой системы. Именно файловая система устанавливает, где и как будет записан файл на физическом носителе (например, жёстком диске).
С точки зрения операционной системы, весь диск представляет собой набор кластеров размером от 512 байт и выше. Драйверы файловой системы организуют кластеры в файлы и каталоги (реально являющиеся файлами, содержащими список файлов в этом каталоге). Эти же драйверы отслеживают, какие из кластеров в настоящее время используются, какие свободны, какие помечены как неисправные.
Однако файловая система не обязательно напрямую связана с физическим носителем информации. Существуют виртуальные файловые системы, а также сетевые файловые системы, которые являются лишь способом доступа к файлам, находящимся на удалённом компьютере
При создании места для хранения файлов ОС использует понятие каталога как способ объединения файлов в группы. Например, студент может иметь по одному каталогу для каждого изучаемого им курса, каталог для электронной почты и каталог для своей домашней web-страницы. Для создания и удаления каталога также необходимы системные вызовы. Они же обеспечивают перемещение существующего файла в каталог и удаление файла из каталога. Содержимое каталога могут составлять файлы или другие каталоги. Эта модель создает структуру — файловую систему.
Иерархии процессов и файлов организованы в виде деревьев (рис. 1). Иерархия процессов обычно не очень глубока, в ней редко бывает больше трех уровней, тогда как файловая структура достаточно часто имеет четыре, пять и даже больше уровней в глубину.

Рис. 1 Дерево каталогов

Иерархия процессов обычно живет, как правило, несколько минут, иерархия каталогов может существовать годами.
Каждый файл в иерархии каталогов можно определить, задав его имя пути, называемое также полным именем файла. Путь начинается из вершины структуры каталогов, называемой корневым каталогом. Такое абсолютное имя пути состоит из списка каталогов, которые нужно пройти от корневого каталога к файлу, с разделением отдельных компонентов. Отдельные компоненты в ОС UNIX разделяются косой чертой /, а в MS-DOS и Windows — обратной косой чертой \.

1.1.1 Классификация файловых систем

По предназначению файловые системы можно классифицировать на следующие категории:
- Для носителей с произвольным доступом (например, жёсткий диск): FAT32, HPFS, ext2 и др. Поскольку доступ к дискам в разы медленнее, чем доступ к оперативной памяти, для прироста производительности во многих файловых системах применяется асинхронная запись изменений на диск. Для этого применяется либо журналирование, например в ext3, ReiserFS, JFS, NTFS, XFS, либо механизм soft updates и др. Журналирование широко распространено в Linux, применяется в NTFS. Soft updates — в BSD системах.
- Для носителей с последовательным доступом (например, магнитные ленты): QIC и др.
- Для оптических носителей — CD и DVD: ISO9660, ISO9690, HFS, UDF и др.
- Виртуальные файловые системы: AEFS и др.
- Сетевые файловые системы: NFS, CIFS, SSHFS, GmailFS и др.
- Для флэш-памяти: YAFFS, ExtremeFFS.

1.1.2 Задачи файловой системы

Основные функции любой файловой системы нацелены на решение следующих задач:
- именование файлов;
- программный интерфейс работы с файлами для приложений;
- отображения логической модели файловой системы на физическую организацию хранилища данных;
- организация устойчивости файловой системы к сбоям питания, ошибкам аппаратных и программных средств;
- содержание параметров файла, необходимых для правильного его взаимодействия с другими объектами системы (ядро, приложения и пр.)
В многопользовательских системах появляется еще одна задача: защита файлов одного пользователя от несанкционированного доступа другого пользователя, а также обеспечение совместной работы с файлами, к примеру, при открытии файла одним из пользователей, для других этот же файл временно будет доступен в режиме «только чтение».
Основным понятием, связанным с операционными системами, является процесс — абстрактное понятие, описывающее работу программы.
Все современные компьютеры могут выполнять одновременно несколько операций. Так, одновременно с запущенной пользователем программой может выполняться чтение с диска и вывод текста на экран монитора или на принтер. В многозадачной системе процессор переключается между программами, предоставляя каждой от десятков до сотен миллисекунд. При этом в каждый конкретный момент времени процессор занят только одной программой, но за секунду он успевает поработать с несколькими программами, создавая у пользователей иллюзию параллельной работы со всеми программами. Иногда в этом случае говорят о псевдопараллелизме, в отличие от настоящего параллелизма в многопроцессорных системах, содержащих несколько процессоров, разделяющих общую память между собой. Производители операционных систем разработали концептуальную модель последовательных процессов, упрощающую наблюдение за работой параллельно идущих процессов.
Рассмотрим содержание и применение этой модели.
В модели процесса все функционирующее на компьютере ПО организовано в виде набора последовательных процессов, или просто процессов. Процессом является выполняемая программа вместе с текущими значениями счетчика команд, регистров и переменных. С позиций этой абстрактной модели у каждого процесса есть собственный центральный виртуальный процессор. На самом деле центральный процессор переключается с процесса на процесс, но для лучшего понимания системы проще рассматривать набор процессов, идущих параллельно, чем представлять процессор, переключающийся от программы к программе. Это переключение и называется многозадачностью или мультипрограммированием.
Операционной системе нужен способ создания и прерывания процессов по мере необходимости. Обычно при загрузке ОС создаются несколько процессов. Некоторые из них обеспечивают взаимодействие с пользователем и выполняют заданную работу. Остальные процессы являются фоновыми. Они не связаны с конкретными пользователями, но выполняют особые функции. Например, один фоновый процесс может обеспечивать вывод на печать, другой может обрабатывать запросы к web-страницам.
Процессы могут создаваться не только в момент загрузки системы. Так, текущий процесс может создать один или несколько новых процессов, при этом текущий процесс выполняет системный запрос на создание нового процесса. Создание новых процессов особенно полезно в тех случаях, когда выполняемую задачу проще всего сформировать как набор связанных, но независимо взаимодействующих процессов. Если необходимо организовать выборку большого количества данных из сети для дальнейшей обработки, удобно создать один процесс для выборки данных и размещения их в буфере, другой — для считывания и обработки данных из буфера. Такая схема даже ускорит обработку данных, если каждый процесс запустить на отдельном процессоре в случае многопроцессорной системы.
Как правило, процессы завершаются по мере выполнения своей работы. Так, после окончания компиляции программы компилятор выполняет системный запрос, чтобы сообщить ОС об окончании работы. В текстовых редакторах, браузерах и других программах такого типа есть кнопка или пункт меню, с помощью которых можно завершить процесс.
Процесс является независимым объектом со своим счетчиком команд и внутренним состоянием, однако существует необходимость взаимодействия с другими процессами. Например, выходные данные одного процесса могут служить входными данными для другого процесса.
Модель процессов упрощает представление о внутреннем поведении системы. Некоторые процессы запускают программы, выполняющие команды, введенные с клавиатуры пользователем. Другие процессы являются частью системы и обрабатывают такие задачи, как выполнение запросов файловой службы, управление запуском диска или магнитного накопителя.
Рассмотренный подход описывается моделью, представленной на рис. 2. Нижний уровень ОС — это планировщик — небольшая программа. На верхних уровнях расположены процессы. Обработка прерываний и процедуры, связанные с остановкой и запуском процессов, выполняются планировщиком. Вся остальная часть ОС структурирована в виде набора процессов.

	0
	1
	…
	п-2
	п-1

	
	Планировщик
	

Рис. 2 Нижний уровень ОС, отвечающий за прерывание и планирование

Реализация модели процессов базируется на таблице процессов с одним элементом для каждого процесса. Элемент таблицы содержит информацию о состоянии процесса, счетчике команд, распределении памяти, состоянии открытых файлов, об указателе стека, использовании и распределении ресурсов, а также всю остальную информацию, которую необходимо сохранять при переключении в состояние готовности или блокировки для последующего запуска процесса, как если бы он не останавливался.
	В обычных ОС процесс определяется соответствующим адресным пространством и одиночным управляющим потоком. Но часто встречаются ситуации, когда в одном адресном пространстве предпочтительно иметь несколько квазипараллельных управляющих процессов.
Модель процесса базируется на двух независимых концепциях: группировании ресурсов и выполнении программы. Когда их разделяют, появляется понятие потока.
С одной стороны, процесс можно рассматривать как способ объединения родственных ресурсов в одну группу. У процесса есть адресное пространство, содержащее программу, данные и другие ресурсы. Ресурсами являются открытые файлы, дочерние процессы, аварийные необработанные сообщения, обработчики сигналов, учетная информация и многое другое. Гораздо проще управлять ресурсами, объединив их в форме процесса.
С другой стороны, процесс можно рассматривать как поток исполняемых команд. У потока есть счетчик команд, отслеживающий порядок выполнения действий. У него есть регистры, в которых хранятся текущие переменные. У него есть стек, содержащий протокол выполнения процесса, где на каждую вызванную процедуру отведена отдельная структура. Хотя поток протекает внутри процесса, следует различать концепции потока и процесса. Процессы используются для группирования ресурсов, а потоки являются объектами, поочередно исполняющимися на ЦП.
Концепция потоков добавляет к модели процесса возможность одновременного выполнения в одной и той же среде процесса нескольких достаточно независимых программ. Несколько потоков, работающих параллельно в одном процессе, аналогичны нескольким процессам, идущим параллельно на одном компьютере. В первом случае потоки разделяют адресное пространство, открытые файлы и другие ресурсы. Во втором — процессы совместно пользуются физической памятью, дисками, принтерами и другими ресурсами. Потоки обладают некоторыми свойствами процессов, поэтому их иногда называют упрощенными процессами. Термин многопоточность также используется для описания использования нескольких потоков в одном процессе.
	При запуске многопоточного процесса в системе с одним процессором потоки работают поочередно. Процессор быстро переключается между потоками, создавая впечатление параллельной работы потоков, даже не на очень быстром процессоре. Например, в случае трех потоков в одном процессе все потоки будут работать параллельно. Каждому потоку будет соответствовать виртуальный процессор с быстродействием, равным одной трети быстродействия реального процессора.
При использовании потоков имеется также возможность совместного применения параллельными объектами одного адресного пространства и всех содержащихся в нем данных. Для некоторых приложений эта возможность является существенной. В таких случаях схема параллельных процессов с разными адресными пространствами не подходит.
В пользу потоков работает еще один аргумент — легкость их создания и уничтожения, так как с потоком не связаны никакие ресурсы. В большинстве систем на создание потока уходит примерно в 100 раз меньше времени, чем на создание процесса. Это свойство особенно полезно при необходимости динамического и быстрого изменения числа потоков.
Третьим аргументом является производительность. Концепция потоков не дает увеличения производительности, если они ограничены возможностями процессора. Но когда имеется одновременная потребность в выполнении большого объема вычислений и операций ввода-вывода, наличие потоков позволяет совмещать эти процедуры во времени, увеличивая, тем самым, общую скорость работы приложения.
Концепция потоков полезна также в системах с несколькими процессорами, где возможен настоящий параллелизм.
Необходимость потоков проще продемонстрировать на конкретном примере. Рассмотрим текстовый процессор, который выводит на экран монитора текст в том виде, в котором он будет напечатан. Допустим, что пользователь пишет книгу. С точки зрения автора проще хранить книгу в одном файле, чтобы легче было искать отдельные фрагменты, редактировать и т.п.
	Представим, что пользователь удалил предложение на первой странице, а затем исправил предложение на 350-й странице документа, в котором 400 страниц. Он дает команду программе перейти на страницу с номером 350. Текстовому процессору придется переформатировать весь документ вплоть до 350-й страницы, поскольку он не знает, где начинается эта страница. Это может занять довольно много времени и вряд ли обрадует пользователя.
В данном случае помогут потоки. Пусть текстовый процессор написан в виде двухпоточной программы. Один поток взаимодействует с пользователем, а второй переформатирует документ в фоновом режиме. Как только предложение на первой странице было удалено, интерактивный поток дает команду фоновому потоку переформатировать весь документ. В то время как первый поток продолжает выполнять команды с клавиатуры или мыши, второй поток быстро переформатирует документ. Может случиться, что форматирование будет закончено раньше, чем пользователь захочет перейти к 350-й странице, и тогда команда будет выполнена мгновенно. Можно добавить третий поток. Большинство текстовых процессоров автоматически сохраняет редактируемый текст один раз в несколько минут (время устанавливается пользователем), чтобы в случае аварийного завершения программы, отказа системы или перебоев с питанием пользователь не лишился результатов своей работы. Этим может заниматься третий поток, не отвлекая два оставшихся.

1.2 Структура и состав операционной системы

Процесс работы компьютера в определенном смысле сводится к обмену файлами между устройствами. В операционной системе имеются программные модули, управляющие файловой системой.	
В состав операционной системы входит специальная программа — командный процессор, которая запрашивает у пользователя команды и выполняет их. Пользователь может дать, например, команду выполнения какой-либо операции над файлами (копирование, удаление, переименование), команду вывода документа на печать и т. д. Операционная система должна эти команды выполнить. К магистрали компьютера подключаются различные устройства (дисководы, монитор, клавиатура, мышь, принтер и др.). В состав операционной системы входят драйверы устройств — специальные программы, которые обеспечивают управление работой устройств и согласование информационного обмена с другими устройствами. Любому устройству соответствует свой драйвер.
Для упрощения работы пользователя в состав современных операционных систем, и в частности в состав Windows, входят программные модули, создающие графический пользовательский интерфейс. В операционных системах с графическим интерфейсом пользователь может вводить команды посредством мыши, тогда как в режиме командной строки необходимо вводить команды с помощью клавиатуры.
Операционная система содержит также сервисные программы, или утилиты. Такие программы позволяют обслуживать диски (проверять, сжимать, дефрагментировать и т. д.), выполнять операции с файлами (архивировать и т. д.), работать в компьютерных сетях и т. д.
Для удобства пользователя в операционной системе обычно имеется и справочная система. Она предназначена для оперативного получения необходимой информации о функционировании как операционной системы в целом, так и о работе ее отдельных модулей.
Архитектура операционных систем Windows является модульной. Структурно ее можно разделить на две части:
Первая часть работает в режиме ядра (kernel mode) и называется исполнительной системой Windows (Windows executive). Компоненты режима ядра обладают следующими функциональными возможностями:
- имеют доступ к оборудованию;
- имеют прямой доступ ко всем видам памяти компьютера;
- не выгружаются на жесткий диск в файл подкачки;
- имеют более высокий приоритет, нежели процессы режима пользователя.
Вторая часть работает в так называемом режиме пользователя (user mode) Эту часть составляют защищенные подсистемы ОС. Особенности процессов пользовательского режима:
- не имеют прямого доступа к оборудованию, все запросы на использование аппаратных ресурсов должны быть разрешены компонентом режима ядра;
- ограничены размерами выделенного адресного пространства, это ограничение устанавливается выделением процессу фиксированных адресов;
- могут быть выгружены из физической памяти в виртуальную на жестком диске;
- приоритет процессов данного типа ниже приоритета процессов режима ядра, это предохраняет ОС от снижения производительности или задержек, происходящих по вине приложений.

1.3 Защищенные подсистемы

Защищенные подсистемы - это серверные процессы пользовательского режима, создаваемые ОС во время загрузки. После создания они функционируют постоянно, обрабатывая сообщения от прикладных процессов и других подсистем.
В Windows два типа защищенных подсистем:
1. Подсистемы среды. Под такими подсистемами понимаются программы-серверы пользовательского режима, реализующие программный интерфейс некоторой операционной системы. Главнейшей подсистемой этого типа является Win32. К ее функциям относятся:
- предоставление приложениям стандартного программного интерфейса к функциям ОС;
- реализация графического пользовательского интерфейса;
- управление пользовательским вводом/выводом.
К подсистемам среды относятся также подсистемы POSIX и OS/2.
2. Внутренние подсистемы. К этому типу относятся подсистемы, выполняющие важные функции ОС. Вот основные:
- Подсистема безопасности. Осуществляет регистрацию правил контроля доступа, поддержку базы данных учетных записей пользователей, прием регистрационной информации и инициализацию процесса аутентификации пользователей.
- Служба рабочей станции. Предоставляет приложениям механизм доступа к сетевым ресурсам, таким как файлы, папки, принтеры и т. п.
- Служба сервера. Обслуживает входящие из сети запросы на доступ к ресурсам компьютера, например, к файлам и папкам.
- Исполнительная система и уровень абстрагирования от оборудования. В состав исполнительной системы входят следующие элементы:
- Справочный монитор защиты (Security Reference Monitor, SRM). Гарантирует выполнение политики защиты на локальном компьютере. Оберегает ресурсы ОС, обеспечивая защиту объектов и аудит доступа к ним.
- Диспетчер процессов (Process Manager). Создает и завершает процессы и потоки. Кроме того, приостанавливает и возобновляет исполнение потоков, хранит и выдает информацию о процессах и потоках NT.
- Диспетчер межпроцессного взаимодействия (Interprocess Communication Manager, IPC Manager). Обеспечивает взаимодействие между подсистемами режима пользователя и исполнительной подсистемы.
- Диспетчер виртуальной памяти (Virtual memory manager, VMM). Реализует виртуальную память - схему управления памятью, которая предоставляет каждому процессу большое собственное адресное пространство и защищает это пространство от других процессов.
- Ядро (Kernel). Реагирует на прерывания и исключения, выполняет межпроцессорную синхронизацию и предоставляет набор элементарных объектов и интерфейсов, используемый остальными частями исполнительной системы для реализации объектов более высокого уровня.
- Подсистема ввода/вывода (I/O Subsystem). Состоит из группы компонентов, отвечающих за выполнение ввода/вывода на разнообразные устройства. Подробнее подсистема ввода/вывода рассматривается в следующих разделах.
- Диспетчер объектов (Object manager). Создает, поддерживает и уничтожает объекты исполнительной системы Windows - абстрактные типы данных, представляющие системные ресурсы.
- Диспетчер электропитания (Advanced Configuration and Power Interface Manager, ACPI-manager). Управляет электропитанием устройств, координирует запросы устройств, связанные с изменением режима электропитания.
- Диспетчер Plug and Play (PnP-manager). Обеспечивает распознавание PnP-устройств после процесса загрузки ОС, управляет их драйверами, предоставляет интерфейс средствам пользовательского режима для поиска устройств, их установки и удаления, а также остановки и возобновления их работы.
- Диспетчер окон и интерфейс графических устройств (Graphic Device Interface, GDI). Управляет отображением окон, обеспечивает прием ввода от клавиатуры и мыши, распределяя информацию приложениям.
Компоненты исполнительной системы реализованы как независимые от аппаратной платформы модули. Это обеспечивается наличием уровня абстрагирования от оборудования и делает ОС максимально переносимой.
Уровень абстрагирования от оборудования (Hardware Abstract Level, HAL). Представляет собой программную прослойку между исполнительной системой Windows и аппаратной платформой, на которой работает ОС. HAL скрывает аппаратно-зависимые детали, такие как интерфейсы ввода/вывода, контроллеры прерываний и механизмы межпроцессорных связей. Вместо того чтобы обращаться к аппаратуре непосредственно, исполнительная система Windows вызывает функции HAL.

2. Управление памятью

Память представляет собой важный ресурс, требующий тщательного управления, поскольку программы увеличиваются в размерах быстрее, чем память.
Память в компьютере имеет иерархическую структуру. Небольшая ее часть представляет собой очень быструю энергозависимую (теряющую информацию при выключении питания) кэш-память. Компьютеры обладают также десятками мегабайт энергозависимой оперативной памяти ОЗУ (RAM, Random Access Memory — память с произвольным доступом) и десятками или сотнями гигабайт медленного энергонезависимого пространства на жестком диске. Одной из задач ОС является координация использования всех этих составляющих памяти.
	Часть операционной системы, отвечающая за управление памятью, называется модулем управления памятью или менеджером памяти. Менеджер следит за тем, какая часть памяти используется в данный момент, выделяет память процессам и по их завершении освобождает ресурсы, управляет обменом данных между ОЗУ и диском.
Системы управления памятью делят на два класса. К первому классу относятся системы, перемещающие процессы между оперативной памятью и диском во время их выполнения, т.е. осуществляющие подкачку процессов целиком (swapping) или постранично (paging). Обычный и постраничный варианты подкачки являются искусственными процессами, вызванными отсутствием достаточного количества оперативной памяти для одновременного хранения всех программ. Ко второму — те, которые этого не делают. Второй класс систем проще. Поскольку ПО растет еще быстрее, чем память, то, вероятно, потребность в эффективном управлении памятью будет существовать всегда. В 80-е гг. использовали системы разделения времени для работы десятков пользователей на машинах VAX с объемом памяти 4 Мбайт. Сейчас рекомендуется для индивидуальной работы в системе Windows 2000 устанавливать на компьютер не менее 64 Мбайт оперативной памяти. Дальнейшее развитие в сторону мультимедийных систем накладывает еще большие требования на размер оперативной памяти.
Самая простая схема управления памятью — однозадачная система без подкачки на диск — заключается в том, что в каждый момент времени работает только одна программа, и память разделяется между программами и операционной системой. Когда система организована таким образом, в каждый конкретный момент времени может работать только один процесс. Как только пользователь набирает команду, ОС копирует запрашиваемую программу с диска в память и выполняет ее, а после окончания процесса выводит на экран символ приглашения и ждет новой команды. Получив команду, она загружает новую программу в память, записывая ее поверх предыдущей. Так работают компьютеры с операционной системой MS-DOS.
	Большинство современных систем позволяет одновременный запуск нескольких процессов. Наличие нескольких процессов, работающих в один и тот же момент времени, означает, что когда один процесс приостановлен в ожидании завершения операции ввода-вывода, другой может использовать центральный процессор. Таким образом, многозадачность увеличивает загрузку процессора. На сетевых серверах всегда одновременно работают несколько процессов (для разных клиентов), но и большинство клиентских машин в наши дни также имеют эту возможность. Самый простой способ достижения многозадачности состоит в разбиении памяти на n, возможно, не равных, разделов. Когда задание поступает в память, оно располагается во входной очереди к наименьшему разделу, достаточно большому для того, чтобы вместить это задание. Так как размер разделов неизменен, то все неиспользуемое работающим процессом пространство в разделе пропадает. Недостаток этого способа заключается в том, что к большому разделу очереди почти не бывает, а к маленьким разделам выстраивается довольно много задач. Небольшие задания должны ждать своей очереди, чтобы попасть в память, несмотря на то, что свободна основная часть памяти. Усовершенствованный способ заключается в организации одной общей очереди для всех разделов. Как только раздел освобождается, задачу, находящуюся ближе к началу очереди и подходящую для выполнения в этом разделе, можно загрузить в него и начать ее обработку. С другой стороны, нежелательно тратить большие разделы на маленькие задачи, поэтому существует другая стратегия. Она заключается в том, что каждый раз после освобождения раздела происходит поиск в очереди наибольшего для этого раздела задания, и именно оно выбирается для обработки. Однако этот алгоритм отстраняет от обработки небольшие задачи, хотя необходимо предоставить для мелких задач лучшее обслуживание. Выходом из положения служит создание хотя бы одного маленького раздела, который позволит выполнять мелкие задания без долгого ожидания освобождения больших разделов. Другой подход предусматривает следующий алгоритм: задачу, которая имеет право быть выбранной для обработки, можно пропустить не более k раз. Когда задача пропускается, к счетчику добавляется единица. Если значение счетчика стало равным k, игнорировать задачу больше нельзя.
При использовании многозадачности повышается эффективность загрузки ЦП. Если средний процесс выполняет вычисления только 20 % от времени, которое он находится в памяти, то при обработке пяти процессов ЦП должен быть загружен полностью. Реальная же ситуация предполагает, что все пять процессов никогда не ожидают завершения операции ввода-вывода одновременно.
	Организация памяти в виде фиксированных разделов проста и эффективна для работы с пакетными системами. До тех пор, пока в памяти может храниться достаточное количество задач для обеспечения постоянной занятости ЦП, причин для усложнения алгоритма нет.
Однако совсем другая ситуация складывается с системами разделения времени или компьютерами, ориентированными на работу с графикой. Оперативной памяти иногда оказывается недостаточно для того, чтобы разместить все активные процессы, и тогда избыток процессов приходится хранить на диске, а для обработки переносить их в память.
Существуют два основных способа управления памятью, зависящие частично от доступного аппаратного обеспечения. Самая простая стратегия, называемая свопингом (swapping) или подкачкой, состоит в том, что каждый процесс полностью переносится в память, работает некоторое время и затем целиком возвращается на диск. Другая стратегия, носящая название виртуальной памяти, позволяет программам работать даже тогда, когда они только частично находятся в оперативной памяти.
Работа системы свопинга заключается в следующем. Пусть имеются остальные — на диске. Например, программа размером 16 Мбайт сможет работать на машине с 4 Мбайт памяти, если тщательно продумать, какие 4 Мбайт должны храниться в памяти в каждый момент времени. При этом части программы, находящиеся на диске и в памяти, будут меняться местами по мере необходимости.
Виртуальная память может также работать в многозадачной системе при одновременно находящихся в памяти частях многих программ. Когда программа ждет перемещения в память очередной своей части, она находится в состоянии ввода-вывода и не может работать, поэтому ЦП может быть отдан другому процессу.

3. Ввод-Вывод

Одной из важнейших функций ОС является управление устройствами ввода-вывода компьютера. Операционная система дает этим устройствам команды, перехватывает прерывания и обрабатывает ошибки. Она должна обеспечить простой и удобный интерфейс между устройствами и остальной частью системы. Интерфейс должен быть одинаковым для всех устройств с целью достижения независимости от применяемой аппаратуры. Программное обеспечение ввода-вывода составляет существенную часть операционной системы.
Устройства ввода-вывода можно разделить на две категории: блочные устройства и символьные устройства. Блочные устройства хранят информацию в виде блоков фиксированного размера, причем у каждого блока имеется свой адрес. Размеры блоков колеблются от 521 до 32 768 байт. Важное свойство блочного устройства состоит в том, что каждый его блок может быть прочитан независимо от остальных блоков. Наиболее распространенными блочными устройствами являются диски.
Другой тип устройств ввода-вывода — символьные устройства. Символьное устройство принимает или предоставляет поток неструктурированных символов. Оно не является адресуемым и не выполняет операцию поиска. Принтеры, сетевые адаптеры, мыши и большинство других устройств, не похожих на диски, можно считать символьными устройствами.
Такая классификация является условной. Некоторые устройства не попадают ни в одну из категорий. Например, часы не являются блок-адресуемыми. Они не формируют и не принимают символьных потоков. Вся их работа заключается в инициировании прерываний в строго определенные моменты времени. И все же модель блочных и символьных устройств является настолько общей, что может служить основой для достижения независимости программного обеспечения ОС от устройств ввода-вывода. Например, файловая система имеет дело с абстрактными блочными устройствами, а зависимую от устройств часть оставляет программному обеспечению низкого уровня.
Устройства ввода-вывода обычно состоят из механической и электронной частей. Механический компонент находится в самом устройстве. Электронный компонент устройства называется контроллером или адаптером. В современных компьютерах контроллеры встраиваются в материнскую плату или располагаются на самом устройстве ввода-вывода. Многие контроллеры способны управлять несколькими идентичными устройствами. Если интерфейс между контроллером и устройством является официальным стандартом ANSI, IEEE или ISO либо фактическим стандартом, то различные производители могут выпускать отдельно устройства и контроллеры, удовлетворяющие данному интерфейсу. Так производятся жесткие диски, соответствующие интерфейсу IDE (Integrated Drive Electronics — встроенный интерфейс накопителей) или SCSI (Small Computer System Interface — системный интерфейс малых компьютеров).
Часто интерфейс между устройством и контроллером является интерфейсом низкого уровня. С диска в контроллер поступает последовательный поток битов, начинающийся с заголовка сектора (преамбулы), за которым следует 4096 бит в секторе, и контрольная сумма, называемая кодом исправления ошибок ЕСС (Error Correcting Code). Заголовок сектора записывается на диск во время форматирования. Он содержит номера цилиндра и сектора, размер сектора, коды синхронизации и другую служебную информацию.
Работа контроллера заключается в конвертировании последовательного потока битов в блок байтов и коррекцию ошибок. Обычно байтовый блок накапливается в буфере контроллера. Затем проверяется контрольная сумма блока, и если она совпадает с указанной в заголовке сектора, то блок считается принятым без ошибок. После этого блок копируется в оперативную память.
Контроллер монитора (видеоадаптер) работает на таком же низком уровне. Он считывает из памяти байты, содержащие символы, которые следует отобразить, и формирует сигналы, используемые для модуляции луча электронной трубки, заставляющие ее выводить изображение на экран. Видеоадаптер формирует сигналы, управляющие горизонтальным и вертикальным возвратом луча. Операционная система только инициализирует контроллер, задавая небольшое количество параметров, таких, как количество пикселов в строке и число строк на экране, а всю работу по управлению передвижениями луча по экрану выполняет контроллер.
Ключевая концепция разработки ПО ввода-вывода формулируется как независимость от устройств. Эта концепция означает возможность написания программ, способных получать доступ к любому устройству ввода-вывода без предварительного указания конкретного устройства. Например, программа, читающая данные из входного файла, должна одинаково успешно работать с файлом на дискете, жестком диске или компакт-диске. При этом не должны требоваться какие-либо изменения в программе. В качестве выходного устройства также может быть указан экран, файл на любом диске или принтер. Все проблемы, связанные с отличиями этих устройств, снимает операционная система.
Тесно связан с концепцией независимости от устройств принцип единообразного именования. Имя файла или устройства должно быть просто текстовой строкой или целым числом. Оно никак не должно зависеть от физического устройства.
Другим важным аспектом ПО ввода-вывода является обработка ошибок. Ошибки должны обрабатываться как можно ближе к аппаратуре. Если контроллер обнаружил ошибку чтения, он должен по возможности исправить эту ошибку сам. Если он не может это сделать, то ошибку должен обработать драйвер устройства. Многие ошибки бывают временными, например ошибки чтения, вызванные пылинками на читающих головках. Такие ошибки исчезают при повторном чтении блока. Только если нижний уровень не может сам справиться с проблемой, о ней следует информировать верхний уровень. Во многих случаях восстановление может осуществляться на нижнем уровне, так, что верхние уровни даже не будут знать о наличии ошибок.
Одним из ключевых вопросов является способ переноса данных — синхронный (блокирующий) или асинхронный (управляемый прерываниями). Большинство операций ввода-вывода на физическом уровне являются асинхронными — ЦП запускает перенос данных и переключается на другой процесс, пока не придет прерывание.
Еще одним аспектом ПО ввода-вывода является буферизация. Часто данные, поступающие с устройства, не могут быть сохранены там, куда они направлены. Например, когда пакет приходит по сети, ОС не знает, куда его поместить, пока не будет проанализировано его содержимое. Буферизация предполагает копирование данных в больших количествах, что часто является основным фактором снижения производительности операций ввода-вывода.
И последним понятием, которое связано с вводом-выводом, является понятие выделенных устройств и устройств коллективного использования. С некоторыми устройствами, такими как диски, может одновременно работать большое количество пользователей. При этом не должно возникать проблем при одновременном открытии на одном и том же диске нескольких файлов. Другие устройства, такие как накопители на магнитной ленте, предоставляются в монопольное пользование. Пока не завершит свою работу один пользователь накопитель не может быть предоставлен другому пользователю. ОС должна уметь управлять как устройствами общего доступа, так и выделенными устройствами.
	Существуют три различных способа осуществления операций ввода-вывода. Простейший вид ввода-вывода состоит в том, что всю работу выполняет центральный процессор. Этот метод называется программным вводом-выводом. ЦП вводит или выводит каждый байт или слово, находясь в цикле ожидания готовности устройства ввода-вывода. Второй способ представляет собой управляемый прерываниями ввод-вывод, при котором ЦП начинает передачу ввода-вывода для символа или слова, после чего переключается на другой процесс, пока прерывание от устройства не сообщит ему об окончании операции ввода-вывода. Третий способ заключается в использовании прямого доступа к памяти (DMA — Direct Memory Access), при котором отдельная микросхема управляет переносом целого блока данных и инициирует прерывание только после окончания операции переноса блока.

Заключение

	На данный момент мировая компьютерная индустрия развивается очень стремительно. Производительность систем возрастает, а следовательно возрастают возможности обработки больших объёмов данных. Операционные системы класса MS-DOS уже не справляются с таким потоком данных и не могут целиком использовать ресурсы современных компьютеров. Поэтому она больше нигде широко не используется. Все стараются перейти на более совершенные ОС, какими являются UNIX и Windows. В данной курсовой работе я рассмотрел основное понятие ОС, особенности ее работы, вкратце рассмотрел ее основные характеристики, такие как управление памятью и ввод-вывод информации.
	

Список литературы

1. Соболь Б.В., Галин А.Б. и др. Информатика. Ростов н/Д, Феникс, 2007. -446с.
2. Сергеева И.И., Музалевская Н.В. и др. Информатика: Учебник. - М.: ФОРУМ: ИНФРА-М, 2006. -336с.
3. Степанов А.Н. Информатика: Учебник для вузов. 4-е изд.-СПБ.: Питер, 2006. -684с.
4. Симонович С.В. Информатика - базовый курс. 2-ое издание, - СПб: Питер, 2004. -640с.

[bookmark: _GoBack]

2

image1.png
n {:] MSOffice
E] Access
: {71 MetoaMarep
U {:] YuebMaTtep
~{] Gab
----- {:] Moisnk
{7 Tables
L-{™1 Uchebniy
EJ C] Excel
] LesExcel
" QUERY
{7 Uchebniy
{™] NabPat

