
Лекция 13
НАДЕЖНОСТЬ ВОССТАНАВЛИВАЕМЫХ ОБЪЕКТОВ И СИСТЕМ
1. Постановка задачи. Общая расчетная модель
 
При расчете показателей надежности восстанавливаемых объектов и систем наиболее распространено допущение: 
· экспоненциальное распределение наработки между отказами; 
· экспоненциальное распределение времени восстановления. 
Допущение во многом справедливо, поскольку во-первых, экспоненциальное распределение наработки описывает функционирование системы на участке нормальной эксплуатации, во-вторых, экспоненциальное распределение описывает процесс без «предыстории».
Применение экспоненциального распределения для описания процесса восстановления позволяет при ординарных независимых отказах представить анализируемые системы в виде марковских систем.
При экспоненциальном распределении наработки между отказами и времени восстановления, для расчета надежности используют метод дифференциальных уравнений для вероятностей состояний (уравнений Колмогорова-Чепмена).
Случайный процесс в какой либо физической системе S, называется марковским, если он обладает следующим свойством: для любого момента t0 вероятность состояния системы в будущем (t > t0) зависит только от состояния в настоящем (t  = t0) и не зависит от того, когда и каким образом система пришла в это состояние (иначе: при фиксированном настоящем будущее не зависит от предыстории процесса - прошлого).
 
	t < t0
	t  > t0


 

  
Для марковского процесса «будущее» зависит от  «прошлого» только через «настоящее», т. е. будущее протекание процесса зависит только от тех прошедших событий, которые повлияли на состояние процесса в настоящий момент.
Марковский процесс, как процесс без последействия, не означает полной независимости от прошлого, поскольку оно проявляется в настоящем.
При использовании метода, в общем случае, для системы S, необходимо иметь математическую модель в виде множества состояний системы S1 , S2 , … , Sn , в которых она может находиться при отказах и восстановлениях элементов.
Для рассмотрения принципа составления модели введены допущения: 
- отказавшие элементы системы (или сам рассматриваемый объект) немедленно восстанавливаются (начало восстановления совпадает с моментом отказа);
- отсутствуют ограничения на число восстановлений;
- если все потоки событий, переводящих систему (объект) из состояния в состояние, являются пуассоновскими (простейшими), то случайный процесс переходов будет марковским процессом с непрерывным временем и дискретными состояниями  S1 , S2 , … , Sn .
Основные правила составления модели:
1. Математическую модель изображают в виде графа состояний.
Элементы графа:
а) кружки (вершины графа S1 , S2 , … , Sn ) – возможные состояния системы S, возникающие при отказах элементов;
б) стрелки – возможные направления переходов из одного состояния Si в другое Sj .
Над/под стрелками указываются интенсивности переходов.
Примеры графа:
 

 
  
S0 – работоспособное состояние;
S1 – состояние отказа.
«Петлей» обозначаются задержки в том или ином состоянии S0 и S1 соответствующие:
- исправное состояние продолжается;
- состояние отказа продолжается (в дальнейшем петли на графах не рассматриваем).
Граф состояний отражает конечное (дискретное) число возможных состояний системы S1 , S2 , … , Sn . Каждая из вершин графа соответствует одному из состояний.
2. Для описания случайного процесса перехода состояний (отказ/ восстановление) применяют вероятности состояний
 
P1(t), P2(t), … , Pi(t), … , Pn(t),
 
где Pi(t) – вероятность нахождения системы в момент t в i-м состоянии, т. е.
 
Pi(t) = P{S(t) = si}.
 
Очевидно, что для любого t
 
	
	(1)


 
(нормировочное условие, поскольку иных состояний, кроме S1 , S2 , … , Sn нет).
3. По графу состояний составляется система обыкновенных дифференциальных уравнений первого порядка (уравнений Колмогорова-Чепмена), имеющих вид:
 
	
	(2)


 
 

 
  
В общем случае, интенсивности потоков ij и ij могут зависеть от времени t.
При составлении дифференциальных уравнений пользуются простым мнемоническим правилом:
а)  в левой части – производная по времени t от Pi(t);
б) число членов в правой части равно числу стрелок, соединяющих рассматриваемое состояние с другими состояниями;
в) каждый член правой части равен произведению интенсивности перехода на вероятность того состояния, из которого выходит стрелка;
г) знак произведения положителен, если стрелка входит (направлена острием) в рассматриваемое состояние, и отрицателен, если стрелка выходит из него.
Проверкой правильности составления уравнений является равенство нулю суммы правых частей уравнений.
 
4. Чтобы решить систему дифференциальных уравнений для вероятностей состояний  P1(t), Pi(t), … , Pn(t) необходимо задать начальное значение вероятностей
P1(0), Pi(0), … , Pn(0),   при  t = 0,
сумма которых равна единице:
 

 
Если в начальный момент t = 0 состояние системы известно, например, S(t=0) = Si, то Pi(0) = 1, а остальные равны нулю.
 
2. Показатели надежности восстанавливаемых систем
 
Все состояния системы S можно разделить на подмножества:
SK S – подмножество состояний j = , в которых система работоспособна;
SM S – подмножество состояний z = , в которых система неработоспособна.
S = SK SM ,
SK SM = 0.
1. Функция готовности Г(t) системы определяет вероятность нахождения системы в работоспособном состоянии в момент t 
 

 
где Pj(t) – вероятность нахождения системы в работоспособном j-м состоянии;
Pz(t) – вероятность нахождения системы в неработоспособном z-м состоянии.
2. Функция простоя П(t) системы
 

 
3. Коэффициент готовности kг.с. системы определяется при установившемся режиме эксплуатации (при t ). При  t устанавливается предельный стационарный режим, в ходе которого система переходит из состояния в состояние, но вероятности состояний уже не меняются
 

 
Коэффициент готовности kг.с. можно рассчитать по системе (2) дифференциальных уравнений, приравнивая нулю их  левые части   dPi(t)/dt = 0, т.к.    Pi = const при t . Тогда система уравнений (2) превращается в систему алгебраических уравнений вида:
 
	
	(3)


 
и коэффициент готовности: 
 

 
есть предельное значение функции готовности при установившемся режиме t .
4.  Параметр потока отказов  системы
 
	
	(4)


 
где jz – интенсивности (обобщенное обозначение) переходов из работоспособного состояния в неработоспособное.
5. Функция потока отказов
 
	
	(5)


 
6. Средняя наработка между отказами на интервале t
 
	
	(6)


 
Примечание:             При t , когда Pj(t = ) = Pj( ) = Pj , средняя наработка между отказами
T0= kг.с./ ,
где  () = .
 

 
В качестве примера вычисления показателей надежности, рассмотрен восстанавливаемый объект, у которого поток отказов простейший (пуассоновский) с параметром потока
= = 1/ T0,
а распределение времени восстановления подчиняется экспоненциальному распределению с интенсивностью восстановления
= 1/ TВ ,
где T0 – средняя наработка  между отказами;
TВ – среднее время восстановления.
 

 
P0(t) – вероятность работоспособного состояния при t;
P1(t) – вероятность неработоспособного состояния при t.
Система дифференциальных уравнений:
 
	
	(7)


 
Начальные условия: при t = 0 P0(t = 0) = P0(0) = 1; P1(0) = 0, поскольку состояния S0 и S1 представляют полную группу событий, то 
 
	P0(t) + P1(t) = 1. 
	(8)


 
Выражая P0(t) = 1 - P1(t), и подставляя в (7) получается одно дифференциальное уравнение относительно P1(t):
 
	dP1(t)/dt =   (1 – P1(t))  -  P1(t).
	(9)


 
Решение уравнения (9) производится с использованием преобразования Лапласа.
Преобразование Лапласа для вероятностей состояния Pi(t):
 

 
т. е. Pi(S) = L{Pi(t)} – изображение вероятности Pi(t).
Преобразование Лапласа для производной dPi(t)/dt:
 

 
После применения преобразования Лапласа к левой и правой частям уравнения, получено уравнение изображений:
 
 
	
	(9)


 
где L{} = L{1} = /S .
При P1(0) = 0
 
SP1(S) + P1(S)( +  ) = /S.
P1(S)( S + +  ) = /S,
 
откуда изображение вероятности нахождения объекта в неработоспособном состоянии:
 
	
	(10)


 
Разложение дроби на элементарные составляющие приводит к:
 

          
Применяя  обратное преобразование Лапласа, с учетом:
L{f(t)} = 1/S, то f(t) = 1;
 
L{f(t)} = 1/( S + a), то f(t) = e-at,
 
вероятность нахождения объекта в неработоспособном состоянии определяется:
 
	
	(11)


 
Тогда вероятность нахождения в работоспособном состоянии P0(t) = 1 - P1(t), равна
 
	
	(12)


 
С помощью полученных выражений можно рассчитать вероятность работоспособного состояния и отказа восстанавливаемого объекта в любой момент t.
Коэффициент готовности системы kг.с.. определяется при установившемся режиме t , при этом Pi(t) = Pi = const, поэтому составляется система алгебраических уравнений с нулевыми левыми частями, поскольку
 
dPi(t)/dt = 0.
 
Так как kг.с есть вероятность того, что система окажется работоспособной в момент t при t , то из полученной системы уравнений определяется P0 = kг.с .
При t алгебраические уравнения имеют вид:
 
	
	(13)


 
Дополнительное уравнение: P0 + P1 = 1.
Выражая P1 = 1 - P0 , получаем 0 =   P0   -  (1 - P0 ), или = P0 ( +  ), откуда
 
	
	(14)


 
Остальные показатели надежности восстанавливаемого элемента:
- функция готовности Г(t), функция простоя  П(t)
 
Г(t) = P0 (t);         П(t) = 1 - Г(t) = P1(t).
 
- параметр потока отказов (t) по (4)
 
  (t) = P0(t) = Г(t).
 
При t (стационарный установившийся режим восстановления)
 
(t) = () = = P0 = kг.с.
 
- ведущая функция потока отказов (t )
 

 
- средняя наработка между отказами (t )
 
t0= kг.с./ = kг.с./ kг = 1/ .
 
На рис. приведено изменение вероятности нахождения объекта в работоспособном состоянии.
 

 
Рис. 1
 
Анализ изменения P0(t) позволяет сделать выводы:
1) При мгновенном (автоматическом) восстановлении работоспособности          (= ) 
  
/ = 0  и   P0(t) = 1.
 
2) При отсутствии восстановления ( = 0)
 
/ =   и   P0(t) = e-t,
 
и вероятность работоспособного состояния объекта равна ВБР невосстанавливаемого элемента.
Некоторые дополнения по применению метода дифференциальных уравнений для оценки надежности.
Метод дифференциальных уравнений может быть использован для расчета показателей надежности и невосстанавливаемых объектов (систем).
В этом случае неработоспособные состояния системы являются «поглощающими» и интенсивности выхода из этих состояний исключаются.
Для невосстанавливаемого объекта граф состояний имеет вид:
 

 
Система дифференциальных уравнений:
 

 
Начальные условия: P0 (0) = 1; P1(0) = 0.
Изображение по Лапласу первого уравнения системы:
 

 
После группировки: 
 

 
откуда
 

 
Используя обратное преобразование Лапласа, оригинал вероятности нахождения в работоспособном состоянии, т. е. ВБР к наработке t:
 

 
3. Связь логической схемы надежности с графом состояний 
 
Переход от логической схемы к графу состояний необходим:
1)при смене методов расчета надежности и сравнении результатов;
2) для оценки выигрыша в надежности при переходе от невосстанавливаемой системы к восстанавливаемой.
Рассмотрим типовые логические структуры надежности. Типовые соединения рассмотрены для невосстанавливаемых систем (граф – однонаправленный, переходы характеризуются ИО ).
Для восстанавливаемых систем в графах состояний добавляются обратные стрелки, соответствующие интенсивностям восстановлений .
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