ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
ГОУВПО “ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ”
Кафедра прикладной математики и информатики

Параллельные методы умножения матрицы на вектор
(лаба №1)

	
	Выполнили студенты 1 курса магистратуры,

	
	группы ПМИ

	
	механико-математического факультета

	
	Габдуллин Артём _______________

	
	Моисеенков Максим_____________
Нурбакова Диана _______________

	
	Принял:

	
	доцент кафедры прикладной

	
	математики и информатики ПГУ,

	
	к.ф.-м.н., доц.

	
	Деменев А.Г.____________________________

Пермь 2010

Цель лабораторной работы.
Реализация последовательного и параллельных алгоритмов умножения матрицы на вектор при использовании 2-х ядерной вычислительной системы с общей памятью.

Постановка задачи.

	В результате умножения матрицы и вектора , получается вектор , каждый i-ый элемент которого есть результат скалярного умножения i-й строки матрицы (обозначим эту строчку) и вектора .

Тем самым получение результирующего вектора предполагает повторение однотипных операций по умножению строк матрицы и вектора . Каждая такая операция включает умножение элементов строки матрицы и вектора (операций) и последующее суммирование полученных произведений (операций).

Общее количество необходимых скалярных операций есть величина .

1. Поcледовательный алгоритм умножения матрицы на вектор

void SerialResultCalculation(double* pMatrix, double* pVector,
 double* pResult, int Size) {
 int i, j; // Loop variables
 for (i=0; i<Size; i++) {
 pResult[i]=0;
 for (j=0; j<Size; j++)
 pResult[i] += pMatrix[i*Size+j]*pVector[j];
 }
}

1. Умножение матрицы на вектор при разделении данных по строкам.
Базовая подзадача - скалярное умножение одной строки матрицы на вектор. После завершения вычислений каждая базовая подзадача определяет один из элементов вектора результата c.
В общем виде схема информационного взаимодействия подзадач в ходе выполняемых вычислений показана на рис.1. Количество вычислительных операций для получения скалярного произведения одинаково для всех базовых подзадач.

Рисунок 1. Организация вычислений при выполнении параллельного алгоритма умножения матрицы на вектор, основанного на разделении матрицы по строкам.

Каждый поток параллельной программы использует только «свои» данные, ему не требуются данные, которые в данный момент обрабатывает другой поток, нет обмена данными между потоками, не возникает необходимости синхронизации. Т.е. практически нет накладных расходов на организацию параллелизма (за исключением расходов на организацию и закрытие параллельной секции), и можно ожидать линейного ускорения. Однако, как будет видно из представленных результатов, ускорение далеко от линейного.
Время решения задачи одним потоком складывается из времени, когда процессор непосредственно выполняет вычисления, и времени, которое тратится на чтение необходимых для вычислений данных из ОП в кэш. При этом время, необходимое на чтение данных, может в несколько раз превосходить время счета.
Процесс выполнения последовательного алгоритма умножения матрицы на вектор может быть представлен диаграммой, изображенной на рис.2.

Рисунок 2. Диаграмма состояний процесса выполнения последовательного алгоритма
умножения матрицы на вектор.

Время выполнения последовательного алгоритма складывается из времени вычислений и времени доступа к памяти:

, где - это количество выполненных операций, - время выполнения одной операции, - размерность матрицы.

, где - объем данных, которые необходимо закачать в кэш процессора, - скорость доступа (пропускная способность канала доступа) ОП.

Таким образом, .

Для оценки , измерим время выполнения последовательного алгоритма при
, т.к. матрица и вектор полностью поместятся в кэш ВЭ. (У нас размер кэш равен 2048 кбайт, поэтому). Чтобы исключить необходимость выборки данных из ОП, перед началом вычислений заполним матрицу и вектор случайными числами – выполнение этого действия гарантирует закачку данных в кэш. Далее при решении задачи все время будет тратиться на вычисления, так как нет необходимости загружать данные из ОП.

Получим 0,00000308.
Тогда

Теперь, оценим при : 8 121 537 238,29
В таблице 1 и на рис.3 представлено сравнение реального времени последовательного алгоритма умножения матрицы на вектор и теоретического.

Таблица 1. Сравнение экспериментального и теоретического времени выполнения последовательного
алгоритма умножения матрицы на вектор.

Рисунок 3. График зависимости экспериментального и теоретического времени выполнения последовательного алгоритма от объема исходных данных (ленточное разбиение матрицы по строкам

В многоядерных процессорах Intel архитектуры Core 2 Duo ядра процессоров разделяют общий канал доступа к памяти. Т.е., несмотря на то, что вычисления могут выполняться ядрами параллельно, доступ к памяти осуществляется строго последовательно. Следовательно, время выполнения параллельного алгоритма в системе с вычислительными элементами, с использованием потоков и при описанной выше схеме доступа к памяти может быть оценено при помощи следующего соотношения: .
void ParallelResultCalculation_rows (double* pMatrix, double* pVector,
 double* pResult, int Size) {
 int i, j; // Loop variables
#pragma omp parallel private (i,j)
 #pragma omp for
 for (i=0; i<Size; i++) {
 for (j=0; j<Size; j++)
 pResult[i] += pMatrix[i*Size+j]*pVector[j];
 }
}
Результаты вычислительных экспериментов приведены в таблице 2. Времена выполнения алгоритмов указаны в секундах.
Ускорение есть результат деления времени работы последовательного алгоритма на время работы параллельного.

Таблица 2. Результаты вычислительных экспериментов для параллельного алгоритма умножения
матрицы на вектор при ленточной схеме разделении данных по строкам.

Рисунок 4. Зависимость ускорения от количества исходных данных при выполнении параллельного алгоритма умножения матрицы на вектор, основанного на ленточном горизонтальном разбиении матрицы

Рисунок 5. График зависимости экспериментального и теоретического времени выполнения параллельного алгоритма от объема исходных данных при использовании двух потоков (ленточное разбиение матрицы по строкам)

ВЫВОД:
Замедление работы программы при использовании параллельного алгоритма (библиотека OpenMP) можно объяснить следующим отчётом профилировщика (см. Рисунок 6).

[bookmark: _Ref263768714]Рисунок 6. Сравнение данных профилировщика последовательной и параллельной программ

Как видно, значительное время при выполнении программы затрачивается в библиотеке libiomp5md.dll.

2. Умножение матрицы на вектор при разделении данных по столбцам.

Базовая подзадача - операция умножения столбца матрицы на один из элементов вектора . Для организации вычислений в этом случае каждая базовая подзадача , должна иметь доступ к i-у столбцу матрицы .

Каждая базовая задача выполняет умножение своего столбца матрицы на элемент , в итоге в каждой подзадаче получается вектор промежуточных результатов. Для получения элементов результирующего вектора с необходимо просуммировать вектора , которые были получены каждой подзадачей.

Рисунок 7. Организация вычислений при выполнении параллельного алгоритма умножения матрицы на вектор с использованием разбиения матрицы по столбцам.

При выполнении параллельного алгоритма умножения матрицы на вектор, основанного на вертикальном разделении матрицы, выполняется больше арифметических операций, т.к. на каждой итерации внешнего цикла после вычисления каждым потоком своей частичной суммы необходимо выполнить редукцию полученных результатов. Сложность выполнения операции редукции – . После выполнения редукции данных, необходимо запомнить результат в очередной элемент результирующего вектора. Таким образом, время вычислений для данного алгоритма определяется формулой: .

На выполнение подкачек данных в кэш тоже тратится некоторое время. Пусть - накладные расходы на организацию параллельности на каждой итерации. Тогда суммарные накладные расходы составляют: .
Таким образом, время выполнения параллельного алгоритма умножения матрицы на вектор, основанного на вертикальном разделении матрицы, может быть вычислено по формуле:

.

void ParallelResultCalculation_columns(double* pMatrix, double* pVector, double* pResult, int Size) {
 int i, j; // Loop variables
 double IterGlobalSum = 0;
 for (i=0; i<Size; i++) {
 IterGlobalSum = 0;
 #pragma omp parallel for reduction(+:IterGlobalSum)
 for (j=0; j<Size; j++)
 IterGlobalSum += pMatrix[i*Size+j]*pVector[j];
 pResult[i] = IterGlobalSum;
 }
}
Результаты вычислительных экспериментов приведены в таблице.

Таблица 3. Результаты вычислительных экспериментов для параллельного алгоритма умножения
матрицы на вектор при ленточной схеме разделении данных по столбцам.

Рисунок 8. Зависимость ускорения от количества исходных данных при выполнении параллельного алгоритма умножения матрицы на вектор, основанного на ленточном вертикальном разбиении матрицы

Для нахождения воспользуемся методом наименьших квадратов. Будем минимизировать квадрат разницы между экспериментальными и теоретическими значениями времени, при этом будет выступать в качестве подгоночного параметра. Воспользуемся функцией поиска решений в Excel.

Будем минимизировать величину
Таким образом, получаем = 5,27565E-06 с=5,3 мкс

Рисунок 9. График зависимости экспериментального и теоретического времени выполнения параллельного алгоритма от объёма исходных данных при использовании двух потоков (ленточное разбиение матрицы по столбцам)

3. Умножение матрицы на вектор при блочном разделении данных.
При блочном разделении матрица делится на прямоугольные наборы элементов – при этом, как правило, используется разделение на непрерывной основе. Пусть количество процессоров (ядер) составляет , количество строк матрицы является кратным s, а количество столбцов – кратным q, то есть и .

После перемножения блоков матрицы A и вектора b каждая подзадача (i,j) будет содержать вектор частичных результатов c'(i,j), определяемый в соответствии с выражениями:

Рисунок 10. Организация вычислений при выполнении параллельного алгоритма умножения матрицы на вектор с использованием блочного разделения данных.

Будем предполагать, что число блоков матрицы А совпадает по горизонтали и вертикали, т.е. s=q.
Для обозначения числа потоков будем использовать переменную π=q2. Для эффективного выполнения алгоритма число базовых подзадач должно совпадать с числом выделенных потоков.
Возьмём число потоков π=4.
Воспользуемся алгоритмом вычисления, основанном на использовании функций библиотеки OpenMP. В данном алгоритме используется вложенный параллелизм.
Для задания количества потоков будет использоваться переменная NestedThreadsNum.

void ParallelResultCalculation_blocks(double* pMatrix, double* pVector, double* pResult,
 int Size) {
 int NestedThreadsNum = 2;
 omp_set_num_threads(NestedThreadsNum);
 omp_set_nested(true);
#pragma omp parallel for
 for (int i=0; i<Size; i++) {
 double ThreadResult = 0;
#pragma omp parallel for reduction(+:ThreadResult)
 for (int j=0; j<Size; j++)
 ThreadResult += pMatrix[i*Size+j]*pVector[j];
 pResult[i] = ThreadResult;
 }
}

	При анализе эффективности данного алгоритма воспользуемся следующими формулами.
	Время выполнения вычислений ограничено сверху величиной: (количество вычислительных элементов совпадает с числом потоков, т.е. p=π)

	При выполнении вычислений, «внутренние» параллельные секции создаются и закрываются много раз, кроме того, дополнительное время тратится на синхронизацию и выполнение операции редукции. Каждый поток создаёт параллельные секции раз. Время выполнения алгоритма может быть вычислено по формуле:

	Результаты вычислительных экспериментов при блочном разделении данных приведены в таблице 5.

Таблица 5. Результаты вычислительных экспериментов для параллельного алгоритма умножения матрицы на вектор при блочной схеме разделении данных.

Рисунок 11. Зависимость ускорения от количества исходных данных при выполнении параллельного алгоритма умножения матрицы на вектор, основанного на блочном разбиении матрицы

Рисунок 12. График зависимости экспериментального и теоретического времени выполнения параллельного алгоритма от объема исходных данных при использовании четырёх потоков при блочном разбиении матрицы

Вывод

[bookmark: _GoBack]В результате проделанной работы, мы пришли к выводу, что среди параллельных алгоритмов умножения матрицы на вектор, самым быстрым оказался алгоритм, основанный на разделении матрицы по строкам. Однако существенного ускорения за счёт распараллеливания достигнуть не удалось. Это связано с тем, что значительное время расходуется на ожидания внутри библиотек OpenMP.

11

image2.wmf
n

b

oleObject43.bin

image51.wmf
d

oleObject44.bin

image52.wmf
overhead

Tn

d

=

oleObject45.bin

image53.wmf
(

)

2

2

21

8

log

p

nn

n

Tnpnn

p

td

b

-

æö

=++++

ç÷

èø

oleObject46.bin

image54.png
[Mawc: [Maxc: [Vooperre’

Pasep varpmis | Bpesn patrs
2 2 seoa

10| 00003 559545E08 L0IE2E07 52765805 529142605 0007856196

100 0000465 4939E05 8E5496E06 0000527565 0000561158 0,02883403

1000] 0003701 000047251 0000ES0223 0,005275645 000861315 0488165361

200 0010335 0001947704 000339749 0010551292 0015836492 0683957033

3000 0020s64 000438123 0007641821 0015826938 0027849398 0,783055338

2000 003530 0007787895 00138319 0021102584 0042473676 0,806534381

00 00373 001216767 0021221623 0026378231 0059767528 0856585861

6000 0073478 0017520575 00305571 0031653877 0079731552 0959557938

7000 0098537 0023846598 0041589620 0036929523 010236575 0944668602

8000 0126340 0031145783 0054319209 0,042205169 012767012 1,0005%0615

000 0160852 003341801 0068745839 0047480815 osseesss 0571315868

10000] 0197126 0048663398 0084863521 0,052756461 018628938 0956556974

image55.png
YckopeHue (cTonbubi)
1,2

08
0,6

04 /

0,2

T T
10 100 1000 2000 3000

T T T T
4000 5000 6000 7000 8000 9000 10000

pasmepHoCTb

image56.png

oleObject2.bin

image57.png
‘Takcn; — Tp;)?

image58.png
Bpema

0,25

0,10

0,00 4

MapanneiiHbiii anroputm (cTonbupl; 2 apa)

=12
—&—T2_calc

==T2_mem
=¥=T2_overhead

—-T2_p

N P S S S & & & &
PSS S

pasmep

image59.png

image60.png

image61.png
l-q

image62.png
ik+v,0<v<klk l+u0<u<l,

i i

=1
FTOEDY
L

image63.png

image64.png

image65.png

image66.png

image3.wmf
m

c

image67.png
| Mac: [Mawc:

Pasvep varpmss [epsn paiors
o g

10| 000058 510889608 101823EQ7 7,04193£05 705722605 0,005519048

100| 0000E76 488994E05 £654%6E05 0000704193 0000717738 0015306199

1000 0006163 000048504 0000ES0223 | 0,00704193 0008378957 0293152685

2000 0010295 0001946731 00033974% 0,01408385 0019428086 0686614473

s000| Oo278ss 0004379775 0007641821 002112579 0033147389 0585285314

4000 0044763 0007785949 00138319 002816772 0049536865 0641977079

5000 0049948 0012165261 0021221623 0035209649 0068596514 | 0911893169

6000 008ESE3 001751765 00305571 0042251579 0090326335 07950724

7000 0115331 0023843192 0041583629 0049293509 011472633 0807110057

s000| O28ss1 003114185 0054319209 0056335439 0141796498 0996622455

2000 0sa36s 0039413631 0068745838 0063377369 0171536839 0847443644

10000| 0218259 0048658533 0084869521 0,070419299 0203947352 0,863938028

image68.png
12

YckopeHue (6n0Ku)

08

0,6

04

0,2

pasmep

image69.png
Bpema

MapanneiiHblii anroputm (610Ku; 2 agpa)

0,25
0,20 /;
0,15 .
—B-T2_calc
0,10
=Ae=T2_mem

0,00 4

=>¢=T2_overhead
—#=T2_p

N P S S S & & & &
PSS S

pasmep

image70.png
UTtorosoe cpaBHeHMe BpeMEH

/&

RIS '»@Q %@0 v@o ¢,°°° %@o /\@o %DQQ q@o§@

pasmep

—-T1
=4—T2_rows
=#—T2_columns
==T2_blocks

oleObject3.bin

image4.wmf
A

oleObject4.bin

image5.wmf
i

a

oleObject5.bin

image6.wmf
b

oleObject6.bin

image7.wmf
1

(,),1.

n

iiijj

j

cababim

=

==×££

å

oleObject7.bin

image8.wmf
c

oleObject8.bin

image9.wmf
m

oleObject9.bin

image10.wmf
A

oleObject10.bin

image11.wmf
b

oleObject11.bin

oleObject12.bin

image12.wmf
n

oleObject13.bin

image13.wmf
1

n

-

oleObject14.bin

image14.wmf
(

)

1

21

Tmn

=×-

oleObject15.bin

image15.jpeg

image16.jpeg
JloeTyn & nassmn
(RAM)

Cuer

Bpeas, t

image17.wmf
1

.

calcmem

TTT

=+

oleObject16.bin

image18.wmf
calc

TN

t

=×

oleObject17.bin

image19.wmf
(

)

21

Nnn

=×-

oleObject18.bin

image20.wmf
t

oleObject19.bin

image21.wmf
n

oleObject20.bin

image22.wmf
2

8

mem

Mn

T

bb

==

oleObject21.bin

image23.wmf
2

8

Mn

=×

oleObject22.bin

image24.wmf
b

oleObject23.bin

image25.wmf
(

)

2

1

8

21

n

Tnn

t

b

=-+

oleObject24.bin

image26.wmf
t

oleObject25.bin

image27.png
361

image28.png
8-n? (BaitT),n ¥ 511

image29.wmf
1

T

=

oleObject26.bin

image30.png
T
ooty

= 4,87¢71% = 0,00000000049.

oleObject27.bin

image31.wmf
5000

n

=

oleObject28.bin

image32.png
I p———

image33.png
[sxcnepenentansroe
[spers pafors (Cex)

0,00000308
0,00001341
0,00180670
0,00706870
0,01630839
0,02873682
0,04554724.
0,07050256
0,09308481
0,12841580
0,15623810
0,18856225

9,24466E-08
9,68256E-06
0,000972635
0,003891515
0,008756638
0,015568006
0,024325617
0,035029473
0,047679572
0,062275916
0,078818503
0,097307334

Bt mem

1,026286-07
8,72336E-06
0,000856942
0,003424346
0,007702212
0,013690541
0,021389332
0,030798586
0,041918302

0,05474848
0,069289121
0,085540224

[Argimko:
Teopemieccos
spens (cex)

B 11_model

1,95074E-07
1,84059E-05
0,001829577
0,007315861

0,01645885
0,029258547
0,045714949
0,065828058
0,089597874
0,117024396
0,148107624
0,182847558

image34.png
Bpema

MocnepgoBaTtenbHbIi anropuTm

—&-T1

=4—T1_model

——T_calc

==T_mem

RIS '»@Q %@0 v@o ¢,°°° %@o /\@o %DQQ q@o§@

pasmep

image35.wmf
p

T

oleObject29.bin

image36.wmf
p

oleObject30.bin

oleObject31.bin

image37.wmf
(

)

22

21

88

p

nn

nn

T

p

t

bb

-

££+

oleObject32.bin

image38.png
- | e | =D
e By frsinti)

] 0003 aumsaEes sAmaeos SAssanees LoesE0r 06

0 ooms aeomscos sasscos sassascs somreas Leroars
a000| 001833 | 000023037 | 00opss26 | 000848526 agois1ses | ossses
20 oo oowones oomsan oomsan oonsssr7 1151766
0| oo ogrsems oganen | oporsen amoessa 0s7sime
o] oo oovwmsis oousias oouswus oouaerszs osezssoms
soon| oosesrs oovtuorss | ooatatsiss| ooananss ogarasasaa | 0sesaosset
ol oo oovmems oowsuss oowsiens omoosss 107288
oo oo ogusion ogusrrs| opssrrrs ausasem 103503002
ol ouwsm oossews oosewsen oosisen oossenn 113310
soon| ouas oowmasa1 oossauses| 0oosmosts aoeeisioor 1o9masees
36| IS B REEsT I IS D I

image39.png
1,8

YcKopeHue (NeHTouHan cxema)

16
14

A
/\

/ \

12

JA—*—*—*—M

08
0,6

04
0,2

T T T T T T T T 1
10 100 1000 2000

T T T
3000 4000 5000 6000 7000 8000 9000 10000

pasmep

image40.png
Bpema

0,2

MapanneiiHblii anroputm (CTPOKK; 2 agpa)

0,18
0,16

f

0,14

0,12

A

& X

01
0,08

& a4

0,06

e

0,04

o~
A

0,02
0!

N N N N N N N N N N
PSS S q@\,@@

pasmep

——T2
—B-T2_calc
=Ae=T2_mem=T2_min

==T2_max

image1.wmf
mn

A

´

image41.png
Wit Time by Utilzation:Self serial Wit Time by UtilzstionsSef: paallel)
Bidie @Poor [0k @deal @ Over @idie @ Poor [0k Mideal [Over

Sync Object Nome)

- Wit Function Sync Object Type Creation Module

Unknown 03426916 00005 | 00005 I Unknown biompSma.dl
Unknown Def7cesh2 os 00005 I Unknown oiompsma.dl
Thread Gr3coterd os 00005 I Thread oiompsma.dl
Thread re8et2081 os 00005 |

Thread libiompsmd.dil
Stream MSVCRS0.dil

= Stream 0xebl33805

64125 [E— T] stream MSVCRSD.dl
00015 | 00015 | Stream MSVCRSD.dl

os prive I OMP JoinBarrier _ lbiompSma.di

o a1 Il OMP JoinBarrier _ libiompSma.di

o 0145 1 OMP For Barer _ ibiompSmail

_mp_wait sleep o 0145 1 OMP For Barer _ ibiompSmail

Manual Reset Event 0x06efddd3 0s 00005 | Manual Reset Event libiompSmd.dil

image42.wmf
A

oleObject33.bin

image43.wmf
b

oleObject34.bin

image44.wmf
,0

iin

£<

oleObject35.bin

oleObject36.bin

image45.wmf
i

oleObject37.bin

oleObject1.bin

oleObject38.bin

image46.wmf
i

b

oleObject39.bin

image47.wmf
(

)

ci

¢

oleObject40.bin

oleObject41.bin

image48.jpeg

image49.wmf
2

log

p

oleObject42.bin

image50.wmf
(

)

2

21

log

calc

nn

Tnpn

p

t

-

æö

=++

ç÷

èø

