Интегральные преобразования
Операционное исчисление и некоторые его приложения
Пусть задана функция действительного переменного t, которая удовлетворяет условиям :
1) 

2) Функция f(t) кусочно-непрерывная (имеет конечное число точек разрыва первого рода).
3) Для любого значения параметра t>0 существует M>0 и S00 такие, что выполняется условие : |f(t)|<Me S0t 

Рассмотрим функцию f(t)e-pt , где р – комплексное число р = ( а + i b).

                                  (1)
Применим к этому соотношению формулу Эйлера :


Проинтегрировав это равенство получим :

                (2)
Оценим левую часть равенства (2) :


А согласно свойству (3)  |f(t)| < Me S0t


В случае если a>S0 имеем :


Аналогично можно доказать, что существует и сходится второй интеграл в равенстве (2).
Таким образом при a>S0 интеграл, стоящий в левой части равенства (2) также существует и сходится. Этот интеграл определяет собой функцию от комплексного параметра р : 

             (3)
Функция F(p) называется изображением функции f(t) по Лапласу, а функция f(t) по отношению к F(p) называется оригиналом.
f(t)  F(p), где F(p) – изображение функции f(t) по Лапласу.

 - это оператор Лапласа.
Смысл введения интегральных преобразований.
Этот смысл состоит в следующем : с помощью перехода в область изображения удается упростить решение многих задач, в частности свести задачу решения многих задач дифференциального, интегрального и интегро-дифференциального уравнения к решению алгебраических уравнений.
Теорема единственности: если две функции  tиt имеют одно и то же изображение F(p), то эти функции тождественно равны.
Смысл теоремы : если при решении задачи мы определим изображение искомой функции, а затем по изображению нашли оригинал, то на основании теоремы единственности можно утверждать, что найденная функция является решением в области оригинала и причем единственным.
Изображение функций 0(t), sin (t), cos (t).

Определение:  называется единичной функцией. 
Единичная функция удовлетворяет требованиям, которые должны быть наложены на функцию для существования изображения по Лапласу. Найдем это изображение :



Изображение единичной функции 
Рассуждая аналогичным образом получим изображение для функции sin(t) :


интегрируя по частям получим :


  т.е. 


Аналогично можно доказать, что cos (t) переходит в функцию в области преобразований. Откуда : 
Изображение функции с измененным масштабом независимого переменного.

где а – константа.

Таким образом : 


  и 

Свойства линейности изображения.
Теорема : изображение суммы нескольких функций умноженное на постоянные равны сумме изображений этих функций умноженных на те же постоянные.





Если , то , где 
Теорема смещения : если функция F(p) это изображение f(t), то F(+p) является изображением функции e-t f(t)                                 (4)
Доказательство :
Применим оператор Лапласа к левой части равенства (4)


Что и требовалось доказать.

Таблица основных изображений:
	F(p)
	f(t)
	F(p)
	f(p)
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Изображение производных.

Теорема. Если , то справедливо выражение :

                                             (1)
Доказательство :





                           (2)

    (3)
Подставляя (3) в (2) и учитывая третье условие существования функции Лапласа имеем :


Что и требовалось доказать. 

Пример: Решить дифференциальное уравнение :

  Если x(0)=0   и x’(0)=0


Предположим, что x(t) – решение в области оригиналов и , где - решение в области изображений.





        
Изображающее уравнение :













Теорема о интегрировании оригинала. Пусть  находится в области оригиналов, , тогда также оригинал, а его изображение .
Таким образом операции интегрирования в области оригиналов соответствует операция деления в области изображений.






Теорема о интегрировании изображений : Пусть  – функция оригинал, которая имеет изображение и  также оригинал, а - является сходящимся интегралом, тогда .
Толкование теоремы : операция деления на аргумент в области оригиналов соответствует операции интегрирования в пределах от р до  в области изображений.

Понятие о свертке функций. Теорема о свертке.
Пусть заданы две функции a(t) и b(t), удовлетворяющие условиям существования изображения по Лапласу, тогда сверткой таких функций называется следующая функция :

            (1)
Свертка обозначается следующим образом :

                         (1’)
Равенства (1) и (1’) идентичны.
Свертка функции подчиняется переместительному закону.
Доказательство:









 Теорема о умножении изображений. Пусть и , тогда произведение изображений  представляется сверткой оригиналов .
Доказательство : 

Пусть изображение свертки 

                      (1)
Интеграл (1) представляет собой повторный интеграл относительно переменных t и  . Изменим порядок интегрирования. Переменные t и  входят в выражение симметрично. Замена переменной производится эквивалентно.


Если в последнем интеграле сделать замену переменной, то после преобразований последний интеграл преобразуется в функцию F2(p).
Операция умножения двух функций в пространстве изображений соответствует операции свертки их оригиналов в области оригиналов. Обобщением теоремы о свертке есть теорема Эфроса. 




Теорема Эфроса. Пусть функция  находится в области оригиналов, , а Ф(р) и q(р) – аналитические функции в области изображений, такие, что , тогда  .
В практических вычислениях важную роль играет следствие из теоремы о свертке, наз. интеграл  Дюамеля. Пусть все условия теоремы выполняются, тогда

  (2)
Соотношение (2) применяется при решении дифференциальных уравнений.

Обратное преобразование Лапласа.

 - Это прямое преобразование Лапласа.
Обратное преобразование есть возможность получить функцию-оригинал через известную функцию-изображение :

, где s – некоторая константа.
Пользоваться формулой для обратного преобразования можно при определенном виде функции F(p), либо для численного нахождения функции-оригинала по известному изображению.

Теоремы разложения.
Известная методика разложения дробно-рациональных функций на сумму элементарных дробей (1)-(4) может быть представлена в виде двух теорем разложения.



Первая теорема разложения. Пусть F(p) – изображение некоторой функции, тогда эта функция представляется в виде ,  k – постоянная, может быть сколь угодно большим числом, , то возможен почленный переход в пространство оригиналов с помощью формулы : .

Вторая теорема разложения. Если изображение представляется дробно-рациональной функцией . Степень числа s меньше степени знаменателя n, знаменатель имеет корни 1, 2, …,  n соответствующий кратности k1, k2, …, kn , при этом k1+ k2 +…+ kn = n. В этом случае оригинал функции определяется по формуле :



                                       (3)

Например :





Связь между преобразованиями Фурье и Лапласа.
Преобразование Лапласа имеет вид :

                            (1)
На  f(t) наложены условия :
1) f(t) определена и непрерывна на всем интервале: (- ;  )
2) f(t) 0 , t  (-  ;0)
3) При  M, S0 >0 , для всех t > 0 выполняется условие |f(t)|<Me S0t

Если отказаться от условий 2 и 3, и считать, что f(t) принимает произвольное значение при t < 0, то вместо (1) можно рассмотреть следующий интеграл :

                            (2)
Формула (2) – двустороннее преобразование Лапласа.
Пусть в (1) и (2)  p =a + in, где a и n – действительные числа.
Предположим, что Re(p) = a = 0, т.е.

                           (4)

                           (5)
(4) и (5) соответственно односторонние и двусторонние преобразования Фурье.

Для существования преобразования Фурье, функция должна удовлетворять условиям :

1) Должна быть определена на промежутке (- ;  ) , непрерывна всюду, за исключением конечного числа точек разрыва первого рода.
2) Любой конечный промежуток оси t можно разделить на конечное число промежутков, в каждом из которых функция либо кусочно-гладкая, либо кусочно-монотонная.
3) 
Функция абсолютно интегрируема : , это условие выполняется, если |f(t)|<Me S0t

Из существования преобразования Лапласа не следует преобразование Фурье. Преобразования Фурье существуют для более узкого класса функций. Преобразования Фурье не существуют для постоянной и ограниченной функции : f(t) = C


Аналогично преобразования Фурье не существуют и для гармоничных функций :


   т.к. 

Если  f(t) = 0 при t>0 и преобразование для этой функции существует, то оно может быть получено из таблицы оригиналов и изображений для преобразования Лапласа путем замены параметра t на iu, но при этом необходимо убедиться, что F(p) не обращается в число справа от мнимой оси.
Если  f(t)  0, t<0

     (6)




Обозначим 

Очевидно, что                            (6’)
Функция (6) называется спектральной плотностью


В связи с изложенным можно указать два пути отыскания спектральной плотности :
1) Вычисление интеграла (5)
2) Использование преобразования Лапласа или Фурье.


Непосредственное вычисление спектральной плотности для абсолютно интегрируемой функции.
Функция F(iu) может быть представлена, как комплексная функция действительной переменной

                                                (7)
|F(iu)| - амплитудное значение спектральной плотности,  (u) – фазовый угол.
В алгебраической форме : F(iu) = a(u) +ib(u)

                                           (8)

                                                      (9)
Для непосредственного вычисления спектральной плотности вычисляется интеграл (6), а затем по формулам (8) и (9) определяется амплитудное значение |F(iu)|  и фазовый угол  (u).

Пример.

Найти спектральную плотность импульса :



откуда , далее





Отыскание спектральной плотности для неабсолютно интегрируемых функций.
Прямое преобразование Фурье для таких функций не существует, существует преобразование Лагранжа.
Прямое преобразование Фурье необходимо :
1) Для облегчения процесса решения дифференциальных и интегральных уравнений.
2) Для исследования амплитудной и частотной характеристик спектральной плотности, определенной всюду на числовой оси.
Введем следующее определение спектральной плотности для неабсолютно интегрируемых функций: 
Если для заданной функции y=f(t) существует непрерывное изображение по Лапласу F(p), то спектральной плотностью функции называется изображение функции по Лапласу при p = iu.
Спектральной плотностью  F1(iu) неабсолютно интегрируемой функции называется предел от спектральной плотности F2(iu) абсолютно интегрируемой функции.
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