
Содержание
Тема 1. Информационные системы	4
1.1. Основные понятия	4
1.2. Факторы, влияющие на развитие корпоративных информационных систем	4
1.2.1. Развитие методик управления предприятием	4
1.2.2. Развитие общих возможностей и производительности компьютерных систем	5
1.2.3. Развитие подходов к технической и программной реализации элементов информационной системы	5
1.3. Основные составляющие корпоративных информационных систем	5
1.4. Соотношение между составляющими информационной системы	6
1.5. Классификация информационных систем	7
1.5.1. Классификация по масштабу	7
1.5.2. Классификация по сфере применения	8
1.5.3. Классификация по способу организации	9
1.6. Области применения и примеры реализации информационных систем	13
1.6.1. Бухгалтерский учет	13
1.6.2. Управление финансовыми потоками	14
1.6.3. Управление складом, ассортиментом, закупками	14
1.6.4. Управление производственным процессом	14
1.6.5. Управление маркетингом	14
1.6.6. Документооборот	14
1.6.7. Оперативное управление предприятием	15
1.6.8. Предоставление информации о фирме	15
Тема 2. Системы документооборота. Lotus Notes	16
2.1. Электронная почта	16
2.2. Базы данных	16
2.2.1. База данных Notes	17
2.2.2. Формы и документы	17
2.2.3. Представления и папки	17
2.2.4. Коллективные и локальные базы данных	17
Тема 3. Проектирование корпоративных информационных систем	19
3.1. Общие сведения об управлении проектами	19
3.1.1. Понятие проекта	19
3.1.2. Классификация проектов	21
3.1.3. Основные фазы проектирования информационной системы	21
Тема 4. Типы баз данных	23
Тема 5. Реляционная модель данных	23
5.1. Учебная БД	25
5.2. Создание таблиц	26
5.3. Типы данных в БД	27
Тема 6. Выборка данных из БД	27
Тема 7. Выборка данных. Соединение	30
Тема 8: Выборка. Подзапрос	32
Тема 9. Обновление строк в таблице	35
Тема 10. Удаление строк	36
Тема 11. Вставка строк	36
Тема 12. Управление транзакциями	37
12.1. Три проблемы, связанные с параллельностью транзакций	38
12.1.1. Проблема утраченного обновления	38
12.1.2. Проблема зависимости от неподтвержденных обновлений	39
12.1.3. Проблема противоречивости	39
12.2. Решение проблем параллелизма	40
12.2.1. Управление с помощью захватов (блокировок)	40
12.2.2. Управление на основе многоверсионных объектов с метками времени	42
Тема 13. Объектно-ориентированное программирование	44
13.1. Основы языка Object Pascal	44
13.1.1. Структура программы в Object Pascal	44
13.1.2. Типы данных	46
13.1.3. Простые и структурированные операторы языка	48
13.1.4. Процедуры и функции	49
13.1.5. Модули Object Pascal	50
13.2. Объектно-ориентированное программирование	51
13.2.1. Основные понятия	51
13.2.2. Основные концепции	52
13.2.3. Поля, свойства и методы	54
Тема 14. Среда разработки Delphi	55
14.1. Быстрая разработка приложений	55
14.2. Главное окно Delphi	55
14.2.1. Палитра компонентов	55
14.2.2. Инспектор объектов	56
14.3. Управление проектами	56
14.4. Основные компоненты для построения простых приложений	56
14.4.1. Формы	56
14.4.2. Стандартные элементы интерфейса	57
Тема 15. Доступ к БД в архитектуре фирмы Borland	58
15.1. Доступ к данным с использованием BDE	58
15.2. Компоненты доступа к данным	59
Тема 16. Обработка исключительных ситуаций	64

[bookmark: _Toc69119079][bookmark: _Toc82244639]
Тема 1. Информационные системы
[bookmark: _Toc69119080][bookmark: _Toc82244640]1.1. Основные понятия
Под информационной системой обычно понимается прикладная программная подсистема, ориентированная на сбор, хранение, поиск и обработку информации.
Большинство информационных систем работает в режиме диалога с пользователем.
Типовые программные компоненты, входящие в состав информационной системы, включают:
диалоговый ввод-вывод;
логику диалога;
прикладную логику обработки данных;
логику управления данными;
операции манипулирования файлами и (или) базами данных.
Корпоративной информационной системой (КИС) мы будем называть совокупность специализированного программного обеспечения и вычислительной аппаратной платформы, на которой установлено и настроено программное обеспечение.
[bookmark: _Toc69119081][bookmark: _Toc82244641]1.2. Факторы, влияющие на развитие корпоративных информационных систем
В последнее время все больше руководителей начинают отчетливо осознавать важность построения на предприятии корпоративной информационной системы как необходимого инструментария для успешного управления бизнесом в современных условиях.
Можно выделить три наиболее важных фактора, существенно влияющих на развитие корпоративных информационных систем:
развитие методик управления предприятием;
развитие общих возможностей и производительности компьютерных систем;
развитие подходов к технической и программной реализации элементов информационной системы.
Рассмотрим эти факторы более подробно.
[bookmark: _Toc69119082][bookmark: _Toc82244642]1.2.1. Развитие методик управления предприятием
Теория управления предприятием представляет собой довольно обширный предмет для изучения и совершенствования. Это обусловлено широким спектром постоянных изменений ситуации на мировом рынке.
Все время растущий уровень конкуренции вынуждает руководителей компаний искать новые методы сохранения своего присутствия на рынке и поддержания рентабельности своей деятельности.
Современная информационная система должна отвечать всем нововведениям в теории и практике менеджмента.
Несомненно, это самый главный фактор, так как построение продвинутой в техническом отношении системы, которая не отвечает требованиям по функциональности, не имеет смысла.
[bookmark: _Toc69119083][bookmark: _Toc82244643]
1.2.2. Развитие общих возможностей и производительности компьютерных систем
Прогресс в области наращивания мощности и производительности компьютерных систем, развитие сетевых технологий и систем передачи данных, широкие возможности интеграции компьютерной техники с самым разнообразным оборудованием позволяют постоянно наращивать производительность информационных систем и их функциональность.
[bookmark: _Toc69119084][bookmark: _Toc82244644]1.2.3. Развитие подходов к технической и программной реализации элементов информационной системы
Параллельно с развитием аппаратной части информационных систем на протяжении последних лет происходит постоянный поиск новых, более удобных и универсальных, методов программно-технологической реализации информационных систем.
Можно выделить три наиболее существенных новшества, оказавших колоссальное влияние на развитие информационных систем в последние годы:
новый подход к программированию: с начала 90-х годов объектно-ориентированное программирование фактически вытеснило модульное; до настоящего времени непрерывно совершенствуются методы построения объектных моделей. Благодаря внедрению объектно-ориентированных технологий программирования существенно сокращаются сроки разработки сложных информационных систем, упрощаются их поддержка и развитие;
благодаря развитию сетевых технологий локальные информационные системы повсеместно вытесняются клиент-серверными и многоуровневыми реализациями;
развитие сети Интернет принесло большие возможности работы с удаленными подразделениями, открыло широкие перспективы электронной коммерции, обслуживания покупателей через Интернет и многое другое. Более того, определенные преимущества дает использование Интернет - технологий в интрасе-тях предприятия (так называемые интранет - технологии).
[bookmark: _Toc69119085][bookmark: _Toc82244645]1.3. Основные составляющие корпоративных информационных систем
В составе корпоративных информационных систем можно выделить две относительно независимых составляющих:
компьютерную инфраструктуру организации, представляющую собой совокупность сетевой, телекоммуникационной, программной, информационной и организационной инфраструктур. Данная составляющая обычно называется корпоративной сетью.
взаимосвязанные функциональные подсистемы, обеспечивающие решение задач организации и достижение ее целей.
Первая составляющая отражает системно-техническую, структурную сторону любой информационной системы.
По сути, это основа для интеграции функциональных подсистем, полностью определяющая свойства информационной системы, определяющие ее успешную эксплуатацию.
Требования к компьютерной инфраструктуре едины и стандартизованы, а методы ее построения хорошо известны и многократно проверены на практике.
Вторая составляющая корпоративной информационной системы полностью относится к прикладной области и сильно зависит от специфики задач и целей предприятия.
Данная составляющая полностью базируется на компьютерной инфраструктуре предприятия и определяет прикладную функциональность информационной системы.
Требования к функциональным подсистемам сложны и зачастую противоречивы, так как выдвигаются специалистами из различных прикладных областей. Однако, в конечном счете, именно эта составляющая более важна для функционирования организации, так как для нее, собственно, и строится компьютерная инфраструктура.
[bookmark: _Toc69119086][bookmark: _Toc82244646]1.4. Соотношение между составляющими информационной системы
Взаимосвязи между двумя указанными составляющими информационной системы достаточно сложны. С одной стороны, эти две составляющие в определенном смысле независимы.
Например, организация сети и протоколы, используемые для обмена данными между компьютерами, абсолютно не зависят от того, какие методы и программы планируется использовать на предприятии для организации бухгалтерского учета.

С другой стороны, указанные составляющие в определенном смысле все же зависят друг от друга. Функциональные подсистемы в принципе не могут существовать без компьютерной инфраструктуры. В то же время компьютерная инфраструктура сама по себе достаточно ограничена, поскольку не обладает необходимой функциональностью.
Например, невозможно эксплуатировать распределенную информационную систему при отсутствии сетевой инфраструктуры. Хотя, имея развитую инфраструктуру, можно предоставить сотрудникам организации ряд полезных общесистемных служб (например, электронную почту и доступ в Интернет), упрощающих работу и делающих ее более эффективной (в частности, за счет использования более развитых средств связи).

Таким образом, разработку информационной системы целесообразно начинать с построения компьютерной инфраструктуры (корпоративной сети) как наиболее важной составляющей, опирающейся на апробированные промышленные технологии и гарантированно реализуемой в разумные сроки в силу высокой степени определенности, как в постановке задачи, так и в предлагаемых решениях.
Корпоративная сеть создается на многие годы вперед, капитальные затраты на ее разработку и внедрение настолько велики, что практически исключают возможность полной или частичной переделки существующей сети.

Функциональные подсистемы, в отличие от корпоративной сети, изменчивы по своей природе, так как в предметной области деятельности организации постоянно происходят более или менее существенные изменения.
Функциональность информационных систем сильно зависит от организационно-управленческой структуры организации, ее функциональности, распределения функций, принятых в организации финансовых технологий и схем, существующей технологии документооборота и множества других факторов.

Разработку и внедрение функциональных подсистем можно выполнять постепенно. Например, сначала на наиболее важных и ответственных участках выполнять разработки, обеспечивающие прикладную функциональность системы (внедрять системы финансового учета, управления кадрами и т.п.), а затем распространять прикладные программные системы и на другие, первоначально менее значимые области управления предприятием.
[bookmark: _Toc69119087][bookmark: _Toc82244647]
1.5. Классификация информационных систем
Информационные системы классифицируются по разным признакам. Рассмотрим наиболее часто используемые способы классификации.
[bookmark: _Toc69119088][bookmark: _Toc82244648]1.5.1. Классификация по масштабу
По масштабу информационные системы подразделяются на следующие группы (рис. 1.1):
одиночные;
групповые;
корпоративные.

Рис. 1.1. Деление информационных систем по масштабу

Одиночные информационные системы
Одиночные информационные системы реализуются, как правило, на автономном персональном компьютере (сеть не используется).
Такая система может содержать несколько простых приложений, связанных общим информационным фондом, и рассчитана на работу одного пользователя или группы пользователей, разделяющих по времени одно рабочее место.
Подобные приложения создаются с помощью так называемых настольных или локальных систем управления базами данных (СУБД). Среди локальных СУБД наиболее известными являются Clarion, Clipper, FoxPro, Paradox, dBase и Microsoft Access.

Групповые информационные системы
Групповые информационные системы ориентированы на коллективное использование информации членами рабочей группы и чаще всего строятся на базе локальной вычислительной сети.
При разработке таких приложений используются серверы баз данных (называемые также SQL-серверами) для рабочих групп.
Существует довольно большое количество различных SQL-серверов, как коммерческих, так и свободно распространяемых. Среди них наиболее известны такие серверы баз данных, как Oracle, DB2, Microsoft SQL Server, InterBase, Sybase, Informix.

Корпоративные информационные системы
Корпоративные информационные системы являются развитием систем для рабочих групп, они ориентированы на крупные компании и могут поддерживать территориально разнесенные узлы или сети.
В основном они имеют иерархическую структуру из нескольких уровней. Для таких систем характерна архитектура клиент-сервер со специализацией серверов или же многоуровневая архитектура.
При разработке таких систем могут использоваться те же серверы баз данных, что и при разработке групповых информационных систем. Однако в крупных информационных системах наибольшее распространение получили серверы Oracle, DB2 и Microsoft SQL Server.

Для групповых и корпоративных систем существенно повышаются требования к надежности функционирования и сохранности данных. Эти свойства обеспечиваются поддержкой целостности данных, ссылок и транзакций в серверах баз данных.
[bookmark: _Toc69119089][bookmark: _Toc82244649]1.5.2. Классификация по сфере применения
По сфере применения информационные системы обычно подразделяются на четыре группы (рис. 1.2):
системы обработки транзакций;
системы принятия решений;
информационно-справочные системы;
офисные информационные системы.

Рис. 1.2. Деление информационных систем по сфере применения

Системы обработки транзакций, в свою очередь, по оперативности обработки данных, разделяются на пакетные информационные системы и оперативные информационные системы. В информационных системах организационного управления преобладает режим оперативной обработки транзакций - OLTP (OnLine Transaction Processing), для отражения актуального состояния предметной области и любой момент времени, а пакетная обработка занимает весьма ограниченную часть. Для систем OLTP характерен регулярный (возможно, интенсивный) поток довольно простых транзакций, играющих роль заказов, платежей, запросов и т.п. Важными требованиями для них являются:
высокая производительность обработки транзакций;
гарантированная доставка информации при удаленном доступе к БД по телекоммуникациям.
Системы поддержки принятия решений - DSS (Decision Support Systeq) - представляют собой другой тип информационных систем, в которых с помощью довольно сложных запросов производится отбор и анализ данных в различных разрезах: временных, географических и по другим показателям.
Обширный класс информационно-справочных систем основам на гипертекстовых документах и мультимедиа. Наибольшее развитие такие информационные системы получили в сети Интернет.
Класс офисных информационных систем нацелен на перевод бумажных документов в электронный вид, автоматизацию делопроизводства и управление документооборотом.

ПРИМЕЧАНИЕ: Следует отметить, что приводимая классификация по сфере применения в достаточной степени условна. Крупные информационные системы очень часто обладают признаками всех перечисленных выше классов. Кроме того, корпоративные информационные системы масштаба предприятия обычно состоят из ряда подсистем, относящихся к различным сферам применения.
[bookmark: _Toc69119090][bookmark: _Toc82244650]1.5.3. Классификация по способу организации
По способу организации групповые и корпоративные информационные системы подразделяются па следующие классы (рис. 1.3):
системы на основе архитектуры файл-сервер;
системы на основе архитектуры клиент-сервер;
системы на основе многоуровневой архитектуры;
системы на основе Интернет/ интранет - технологий.

Рис. 1.3. Деление информационных систем по способу организации

В любой информационной системе можно выделить необходимые функциональные компоненты (табл. 1.1), которые помогают понять ограничения различных архитектур информационных систем. Рассмотрим более подробно особенности вариантов построения информационных приложений.

Таблица 1.1.
Типовые функциональные компоненты информационной системы
	Обозначение
	Наименование
	Характеристика

	PS
	Presentation Services
(средства представления)
	Обеспечиваются устройствами, принимающими ввод от пользователя и отображающими то, что сообщает ему компонент логики представления PL, с использованием соответствующей программной поддержки

	PL
	Presentation Logic
(логика представления)
	Управляет взаимодействием между пользователем и ЭВМ. Обрабатывает действия пользователя при выборе команды в меню, нажатии кнопки или выборе элемента из списка

	BL
	Business or Application Logic
(прикладная логика)
	Набор правил для принятия решений, вычислений и операций, которые должно выполнить приложение

	DL
	Data Logic
(логика управления данными)
	Операции с базой данных (SQL-операторы), которые нужно выполнить для реализации прикладной логики управления данными

	DS
	Data Services
(операции с базой данных)
	Действия СУБД, вызываемые для выполнения логики управления данными, такие как манипулирование данными, определения данных, фиксация или откат транзакций и т.п. СУБД обычно компилирует SQL-предложения

	FS
	File Services
(файловые операции)
	Дисковые операции чтения и записи данных для СУБД и других компонентов. Обычно являются функциями операционной системы (ОС)

Архитектура файл-сервер
Архитектура файл-сервер не имеет сетевого разделения компонентов диалога PS и PL и использует компьютер для функций отображения, что облегчает построение графического интерфейса.
Файл-сервер только извлекает данные из файлов, так что дополнительные пользователи и приложения добавляют лишь незначительную нагрузку на центральный процессор. Каждый новый клиент добавляет вычислительную мощность к сети.
Объектами разработки в файл - серверном приложении являются компоненты приложения, определяющие логику диалога PL, а также логику обработки BL и управления данными DL. Разработанное приложение реализуется либо в виде законченного загрузочного модуля, либо в виде специального кода для интерпретации.
Однако такая архитектура имеет существенный недостаток: при выполнении некоторых запросов к базе данных клиенту могут передаваться большие объемы данных, загружая сеть и приводя к непредсказуемости времени реакции.
Значительный сетевой трафик особенно сильно сказывается при организации удаленного доступа к базам данных на файл-сервере через низкоскоростные каналы связи. Одним из вариантов устранения данного недостатка является удаленное управление файл - серверным приложением в сети. При этом в локальной сети размещается сервер приложений, совмещенный с телекоммуникационным сервером (обычно называемым сервером доступа), в среде которого выполняются обычные файл - серверные приложения. Особенность состоит в том, что диалоговый ввод-вывод поступает от удаленных клиентов через телекоммуникации. Приложения не должны быть слишком сложными, иначе велика вероятность перегрузки сервера, или же нужна очень мощная платформа для сервера приложений.
ПРИМЕЧАНИЕ: Одним из традиционных средств, на основе которых создаются файл-серверные системы, являются локальные СУБД. Однако такие системы, как правило, не отвечают требованиям обеспечения целостности данных (в частности, они не поддерживают транзакции). Поэтому при их использовании задача обеспечения целостности данных возлагается на программы клиентов, что приводит к усложнению клиентских приложений. Однако эти инструменты привлекают своей простотой, удобством использования и доступностью. Поэтому файл-серверные информационные системы до сих пор представляют интерес для малых рабочих групп и, более того, нередко используются в качестве информационных систем масштаба предприятия.

ПРИМЕР:
 (
Центральное хранилище
БД
Данные о сче
тах всех видов (валютные, руб
левые)
Компьютер контролера
СУБД
Программа обработки рублевых вкладов
Запрос о счете вкладчика «Х»
Файл, содержащий данные о счетах всех вкладчиков
)

Архитектура клиент-сервер
Архитектура клиент-сервер предназначена для разрешения проблем файл-серверных приложений путем разделения компонентов приложения и размещения их там, где они будут функционировать наиболее эффективно.
Особенностью архитектуры клиент-сервер является использование выделенных серверов баз данных, понимающих запросы на языке структурированных запросов SQL (Structured Query Language) и выполняющих поиск, сортировку и агрегирование информации.
Большинство конфигураций клиент-сервер использует двухуровневую модель, в которой клиент обращается к услугам сервера. Предполагается, что диалоговые компоненты PS и PL размещаются на клиенте, что позволяет обеспечить графический интерфейс. Компоненты управления данными DS и FS размещаются на сервере, а диалог (PS, PL), логика BL и DL - на клиенте. Двухуровневое определение архитектуры клиент-сервер использует именно этот вариант: приложение работает у клиента, СУБД - на сервере (рис. 1.4.).

Рис. 1.4. Классический вариант клиент - серверной информационной системы

Поскольку эта схема предъявляет наименьшие требования к серверу, она обладает наилучшей масштабируемостью. Однако сложные приложения, вызывающие большое взаимодействие с БД, могут жестко загрузить как клиента, так и сеть. Результаты SQL-запроса должны вернуться клиенту для обработки, потому что там находится логика принятия решения. Такая схема приводит к дополнительному усложнению администрирования приложений, разбросанных по различным клиентским узлам.
Для сокращения нагрузки на сеть и упрощения администрирования приложений компонент BL можно разместить на сервере. При этом вся логика принятия решений оформляется в виде хранимых процедур и выполняется на сервере БД.
Хранимая процедура - процедура с операторами SQL для доступа к БД, вызываемая по имени с передачей требуемых параметров и выполняемая на сервере БД. Хранимые процедуры могут компилироваться, что повышает скорость их выполнения и сокращает нагрузку на сервер.
Хранимые процедуры улучшают целостность приложений и БД, гарантируют актуальность коллективно используемых операций и вычислений. Улучшается сопровождение таких процедур, а также безопасность (нет прямого доступа к данным).

ПРИМЕЧАНИЕ: Следует помнить, что перегрузка хранимых процедур прикладной логикой может перегрузить сервер, что приведет к потере производительности. Эта проблема особенно актуальна при разработке крупных информационных систем, в которых к серверу может одновременно обращаться большое количество клиентов. Поэтому в большинстве случаев следует принимать компромиссные решения: часть логики приложения размещать на стороне сервера, часть - на стороне клиента. Такие клиент-серверные системы называются системами с разделенной логикой. Данная схема при удачном разделении логики позволяет получить более сбалансированную загрузку клиентов и сервера, но при этом затрудняется сопровождение приложений.

Двухуровневые схемы архитектуры клиент-сервер могут привести к некоторым проблемам в сложных информационных приложениях с множеством пользователей и запутанной логикой. Решением этих проблем может стать использование многоуровневой архитектуры.

ПРИМЕР:

 (
Центральное хранилище
БД
Данные о сче
тах всех видов (валютные, руб
левые)
Компьютер контролера
СУБД
Программа обработки рублевых вкладов
Запрос о счете вкладчика «Х»
Информация о счете вкладчика «Х»
Клиент БД
)

Многоуровневая архитектура
Многоуровневая архитектура стала развитием архитектуры клиент-сервер и в своей классической форме состоит из трех уровней:
нижний уровень представляет собой приложения клиентов, выделенные для выполнения функций и логики представлений PS и PL и имеющие программный интерфейс для вызова приложения на среднем уровне;
средний уровень представляет собой сервер приложений, на котором выполняется прикладная логика BL и с которого логика обработки данных DL вызывает операции с базой данных DS;
верхний уровень представляет собой удаленный специализированный сервер базы данных, выделенный для услуг обработки данных DS и файловых операций FS (без риска использования хранимых процедур).
Подобную концепцию обработки данных пропагандируют, в частности, фирмы Oracle, Sun, Borland и др.
Трехуровневая архитектура позволяет еще больше сбалансировать нагрузку на разные узлы и сеть, а также способствует специализации инструментов для разработки приложений и устраняет недостатки двухуровневой модели клиент-сервер.
Централизация логики приложения упрощает администрирование и сопровождение. Четко разделяются платформы и инструменты для реализации интерфейса и прикладной логики, что позволяет с наибольшей отдачей реализовывать их специалистам узкого профиля. Наконец, изменения прикладной логики не затрагивают интерфейса, и наоборот. Но поскольку границы между компонентами PL, BL и DL размыты, прикладная логика может появиться на всех трех уровнях. Сервер приложений с помощью монитора транзакций обеспечивает интерфейс с клиентами и другими серверами, может управлять транзакциями и гарантировать целостность распределенной базы данных. Средства удаленного вызова процедур наиболее соответствуют идее распределенных вычислений: они обеспечивают из любого узла сети вызов прикладной процедуры, расположенной на другом узле, передачу параметров, удаленную обработку и возврат результатов.
С ростом систем клиент-сервер необходимость трех уровней становится все более очевидной. Продукты для трехзвенной архитектуры, так называемые мониторы транзакций, являются относительно новыми. Эти инструменты в основном ориентированы на среду UNIX, однако прикладные серверы можно строить на базе Microsoft Windows NT с использованием вызова удаленных процедур для организации связи клиентов с сервером приложений. На практике в локальной сети могут использоваться смешанные архитектуры (двухуровневые и трехуровневые) с одним и тем же сервером базы данных. С учетом глобальных связей архитектура может иметь больше трех звеньев. В настоящее время появились новые инструментальные средства для гибкой сегментации приложений клиент-сервер по различным узлам сети.
Таким образом, многоуровневая архитектура распределенных приложений позволяет повысить эффективность работы корпоративной информационной системы и оптимизировать распределение ее программно-аппаратных ресурсов. Но пока на российском рынке по-прежнему доминирует архитектура клиент-сервер.

Интернет/ интранет - технологии
В развитии технологии Интернет/интранет основной акцент пока что делается на разработке инструментальных программных средств. В то же время наблюдается отсутствие развитых средств разработки приложений, работающих с базами данных. Компромиссным решением для создания удобных и простых в использовании и сопровождении информационных систем, эффективно работающих с базами данных, стало объединение Интернет/ интранет - технологии с многоуровневой архитектурой. При этом структура информационного приложения приобретает следующий вид: браузер - сервер приложений - сервер баз данных - сервер динамических страниц - web-сервер.
Благодаря интеграции Интернет/ интранет - технологии и архитектуры клиент-сервер процесс внедрения и сопровождения корпоративной информационной системы существенно упрощается при сохранении достаточно высокой эффективности и простоты совместного использования информации.
[bookmark: _Toc69119091][bookmark: _Toc82244651]1.6. Области применения и примеры реализации информационных систем
В последние несколько лет компьютер стал неотъемлемой частью управленческой системы предприятий. Однако современный подход к управлению предполагает еще и вложение денег в информационные технологии. Причем чем крупнее предприятие, тем больше должны быть подобные вложения.
Благодаря стремительному развитию информационных технологий наблюдается расширение области их применения. Если раньше чуть ли не единственной областью, в которой применялись информационные системы, была автоматизация бухгалтерского учета, то сейчас наблюдается внедрение информационных технологий во множество других областей.
Эффективное использование корпоративных информационных систем позволяет делать более точные прогнозы и избегать возможных ошибок в управлении.
Из любых данных и отчетов о работе предприятия можно извлечь массу полезных сведений. И информационные системы как раз и позволяют извлекать максимум пользы из всей имеющейся в компании информации.
Именно этим фактом и объясняются жизнеспособность и бурное развитие информационных технологий - современный бизнес крайне чувствителен к ошибкам в управлении, и для принятия грамотного управленческого решения в условиях неопределенности и риска необходимо постоянно держать под контролем различные аспекты финансово-хозяйственной деятельности предприятия (независимо от профиля его деятельности).
Поэтому можно вполне обоснованно утверждать, что в жесткой конкурентной борьбе большие шансы на победу имеет предприятие, использующее в управлении современные информационные технологии.
Рассмотрим наиболее важные задачи, решаемые с помощью специальных программных средств.
[bookmark: _Toc69119092][bookmark: _Toc82244652]1.6.1. Бухгалтерский учет
Это классическая область применения информационных технологий и наиболее часто реализуемая на сегодняшний день задача. Такое положение вполне объяснимо. Во-первых, ошибка бухгалтера может стоить очень дорого, поэтому очевидна выгода использования возможностей автоматизации бухгалтерии. Во-вторых, задача бухгалтерского учета довольно легко формализуется, так что разработка систем автоматизации бухгалтерского учета не представляет технически сложной проблемы.
ПРИМЕЧАНИЕ: Тем не менее, разработка систем автоматизации бухгалтерского учета является весьма трудоемкой. Это связано с тем, что к системам бухгалтерского учета предъявляются повышенные требования в отношении надежности и максимальной простоты и удобства в эксплуатации.
[bookmark: _Toc69119093][bookmark: _Toc82244653]1.6.2. Управление финансовыми потоками
Внедрение информационных технологий в управление финансовыми потоками также обусловлено критичностью этой области управления предприятия к ошибкам. Неправильно построив систему расчетов с поставщиками и потребителями, можно спровоцировать кризис наличности даже при налаженной сети закупки, сбыта и хорошем маркетинге. И наоборот, точно просчитанные и жестко контролируемые условия финансовых расчетов могут существенно увеличить оборотные средства фирмы.
[bookmark: _Toc69119094][bookmark: _Toc82244654]1.6.3. Управление складом, ассортиментом, закупками
Далее, можно автоматизировать процесс анализа движения товара, тем самым, отследив и зафиксировав те двадцать процентов ассортимента, которые приносят восемьдесят процентов прибыли. Это же позволит ответить на главный вопрос - как получать максимальную прибыль при постоянной нехватке средств?
«Заморозить» оборотные средства в чрезмерном складском запасе - самый простой способ сделать любое предприятие, производственное или торговое, потенциальным инвалидом. Можно просмотреть перспективный товар, вовремя не вложив в него деньги.
[bookmark: _Toc69119095][bookmark: _Toc82244655]1.6.4. Управление производственным процессом
Управление производственным процессом представляет собой очень трудоемкую задачу. Основными механизмами здесь являются планирование и оптимальное управление производственным процессом.
Автоматизированное решение подобной задачи дает возможность грамотно планировать, учитывать затраты, проводить техническую подготовку производства, оперативно управлять процессом выпуска продукции в соответствии с производственной программой и технологией.
Очевидно, что чем крупнее производство, тем большее число бизнес - процессов участвует в создании прибыли, а значит, использование информационных систем жизненно необходимо.
[bookmark: _Toc69119096][bookmark: _Toc82244656]1.6.5. Управление маркетингом
Управление маркетингом подразумевает сбор и анализ данных о фирмах-конкурентах, их продукции и ценовой политике, а также моделирование параметров внешнего окружения для определения оптимального уровня цен, прогнозирования прибыли и планирования рекламных кампаний. Решение большинства этих задач могут быть формализованы и представлены в виде информационной системы, позволяющей существенно повысить эффективность управления маркетингом.
[bookmark: _Toc69119097][bookmark: _Toc82244657]1.6.6. Документооборот
Документооборот является очень важным процессом деятельности любого предприятия. Хорошо отлаженная система учетного документооборота отражает реально происходящую на предприятии текущую производственную деятельность и дает управленцам возможность воздействовать на нее. Поэтому автоматизация документооборота позволяет повысить эффективность управления.
[bookmark: _Toc69119098][bookmark: _Toc82244658]1.6.7. Оперативное управление предприятием
Информационная система, решающая задачи оперативного управления предприятием, строится на основе базы данных, в которой фиксируется вся возможная информация о предприятии. Такая информационная система является инструментом для управления бизнесом и обычно называется корпоративной информационной системой.
Информационная система оперативного управления включает в себя массу программных решений автоматизации бизнес - процессов, имеющих место на конкретном предприятии. Одно из наиболее важных требований, предъявляемых к таким информационным системам, - гибкость, способность к адаптации и дальнейшему развитию.
[bookmark: _Toc69119099][bookmark: _Toc82244659]1.6.8. Предоставление информации о фирме
Активное развитие сети Интернет привело к необходимости создания корпоративных серверов для предоставления различного рода информации о предприятии. Практически каждое уважающее себя предприятие сейчас имеет свой web-сервер. Web-сервер предприятия решает ряд задач, из которых можно выделить две основные:
создание имиджа предприятия;
максимальная разгрузка справочной службы компании путем предоставления потенциальным и уже существующим абонентам возможности получения необходимой информации о фирме, предлагаемых товарах, услугах и ценах.
Кроме того, использование web-технологий открывает широкие перспективы для электронной коммерции и обслуживания покупателей через Интернет.

[bookmark: _Toc69119100][bookmark: _Toc82244660]
Тема 2. Системы документооборота. Lotus Notes
Lotus Notes является наиболее успешным программным продуктом корпорации Lotus Development и относится к категории продуктов группового программного обеспечения.
Notes представляет собой мощный программный продукт с широким набором средств. Большинство этих средств помогает вводить и использовать информацию совместно с другими пользователями.
Notes реализует один из способов совместного использования информации, предлагая вам своего рода информационный архив, который вы можете использовать совместно с другими людьми. Этот архив можно интерпретировать как базу данных или как электронную картотеку, в которой вы можете хранить и организовывать определенным образом почти любой вид информации.
Notes предоставляет в ваше распоряжение шесть групп, в которые вы можете организовывать базы данных. Каждая из этих групп называется страницей рабочего пространства. Эти страницы используются для того, чтобы упорядочить по категориям базы данных.
Все вместе эти шесть страниц составляют ваше рабочее пространство в Notes.
[bookmark: _Toc69119101][bookmark: _Toc82244661]2.1. Электронная почта
В большинстве офисов электронная почта почти полностью заменила бумажную переписку для внутриофисной связи и даже связи между различными компаниями.
Одним из наиболее важных компонентов Notes является организация почтовой службы.
Ваш компьютер и компьютеры ваших коллег соединяются с сервером Notes при помощи сети. Сервер содержит вашу область памяти и ваш почтовый ящик
[bookmark: _Toc69119102][bookmark: _Toc82244662]2.2. Базы данных
Базы данных предоставляют вам возможность хранить информацию в общедоступном месте.
Lotus Notes – это совокупность технологий, предназначенных для эксплуатации и разработки систем коллективного пользования.
Можно выбелить пять основных взаимосвязанных компонент Lotus Notes:
1. Документоориентированные базы данных;
2. Система реплицирования баз данных;
3. Система защиты информации;
4. Электронная почта;
5. Интегрированная среда разработки баз данных.
Документоориентированные базы данных
База данных содержит совокупность документов. Документ представляет собой основной модуль информации в Lotus Notes и фактически является электронным эквивалентом документа, отпечатанного на бумаге.
Большинство документов Notes содержит текст, графику, рисунки.
Система реплицирования баз данных
Notes обладает архитектурой клиент / сервер. Информация оптимальным образом распределена между центральным сервером Notes локальными компьютерами пользователей. Notes предоставляет доступ к информации вне зависимости от местонахождения пользователей. Вы можете находится дома или в командировке, работать с копией базы данных и периодически связываться с сервером Notes для синхронизации своей копии базы данных с центральной базой на сервере. Для этого используется реплицирование – мощный и гибкий механизм обмена информацией между центральной базой на сервере и копией базы пользователя.

Интегрированная среда разработки баз данных
Интегрированная среда разработки баз данных позволяет разработчикам создавать необходимые им базы данных.
[bookmark: _Toc69119103][bookmark: _Toc82244663]2.2.1. База данных Notes
Самой важной компонентой Lotus Notes являются базы данных. База данных Notes храниться в файле с расширением *.NSF и содержит следующие элементы:
документы с данными, которые надо хранить в базе данных;
формы – бланки, которые используются при создании и отображении этих документов;
списки документов, хранящихся в базе данных;
информация о правах доступа пользователей к базе данных;
специальные программы, называемые агентами, предназначенные для выполнения определенных действий в базе данных.
[bookmark: _Toc69119104][bookmark: _Toc82244664]2.2.2. Формы и документы
Основная единица хранения базы данных Notes – документ, которые является эквивалентом бумажного документа.
Разработчик базы данных заранее определяет, какой тип документов, должен храниться в базе данных, и проектирует одну или несколько форм для создания этих документов.
Форма – это некоторый бланк, который должен заполнить пользователь чтобы поместить документ в базу данных. Каждая база данных имеет свой набор форм, подготовленных разработчиком базы.
Например, база данных "Секретарь" может иметь формы:
"Корреспонденция";
"Звонок";
"Абонент".
Формы содержат некоторые области, помеченные уголками. Эти области формы называются полями. В поля вводятся данные, которые должны храниться в базе.
Также в форме присутствует некоторая текстовая информация, которую в режиме заполнения формы изменить нельзя (надписи в форме).
[bookmark: _Toc69119105][bookmark: _Toc82244665]2.2.3. Представления и папки
Другими важными элементами базы данных Notes являются представления и папки.
Представления – это списки документов, находящихся в базе данных, с краткой информацией о содержимом этих документов.
Каждая база данных должная иметь по крайней мере одно представление.
Представление может содержать как список всех документов базы данных, так и список части документов, в зависимости от того, как спроектировано представление.
Папки также являются списками документов, но для них не устанавливается никакого критерия отбора документов. В начальном состоянии папка может быть пуста, но в любое время вы можете добавить в нее требуемый документ или переместить его из одной папки в другую.
Один и тот же документ может храниться сразу в нескольких папках.
[bookmark: _Toc69119106][bookmark: _Toc82244666]2.2.4. Коллективные и локальные базы данных
Система Notes построена в архитектуре клиент / сервер.
Сервером Notes называют компьютер в локальной сети, на котором установлено соответствующее программное обеспечение, организующее совместную работу и обслуживание рабочих станций Notes (клиентов), присоединенных к этой сети. Это программное обеспечение также называют сервером Notes. Сервер обычно выполняет задачу хранения общих баз данных, их защиту, управление доступом к базам и обеспечение работы почты Notes.
Рабочая станция – компьютер, подсоединенный к сети, в которой находится сервер Notes и на котором установлено соответствующее программное обеспечение для рабочих станций Notes, называемое клиентом Notes.
Файл с базой данных может находиться либо на сервере Notes, либо на рабочей станции. Базы данных, расположенные на жестком диске рабочей станции, называются локальными.
Базы данных, расположенные на сервере Notes, называются базами коллективного пользования или общими, с ними одновременно могут работать все пользователи, подсоединенные к сети.
Для пользователей, работающих на рабочей станции, в том числе и на удаленной (дома), Notes позволяет создать реплику базы данных, расположенной на сервере.
[bookmark: _Toc69119107][bookmark: _Toc82244667]
Тема 3. Проектирование корпоративных информационных систем
Разработка корпоративной информационной системы, как правило, выполняется для вполне определенного предприятия.
Особенности предметной деятельности предприятия, безусловно, будут оказывать влияние на структуру информационной системы. Но в то же время структуры разных предприятий в целом похожи между собой. Каждая организация, независимо от рода ее деятельности, состоит из ряда подразделений, непосредственно осуществляющих тот или иной вид деятельности компании. И эта ситуация справедлива практически для всех организаций, каким бы видом деятельности они ни занимались.
Таким образом, любую организацию можно рассматривать как совокупность взаимодействующих элементов (подразделений), каждый из которых может иметь свою, достаточно сложную, структуру. Взаимосвязи между подразделениями тоже достаточно сложны. В общем случае можно выделить три вида связей между подразделениями предприятия:
функциональные связи - каждое подразделение выполняет определенные виды работ в рамках единого бизнес процесса;
информационные связи - подразделения обмениваются информацией (документами, факсами, письменными и устными распоряжениями и т.п.);
внешние связи - некоторые подразделения взаимодействуют с внешними системами, причем их взаимодействие также может быть как информационным, так и функциональным.
Общность структуры разных предприятий позволяет сформулировать некоторые единые принципы построения корпоративных информационных систем.
В общем случае процесс разработки информационной системы может быть рассмотрен с двух точек зрения:
по содержанию действий разработчиков (групп разработчиков). В данном случае рассматривается статический аспект процесса разработки, описываемый в терминах основных потоков работ: исполнители, действия, последовательность действий и т. п.;
по времени, или по стадиям жизненного цикла разрабатываемой системы. В данном случае рассматривается динамическая организация процесса разработки, описываемая в терминах циклов, стадий, итераций и этапов.
[bookmark: _Toc69119108][bookmark: _Toc82244668]3.1. Общие сведения об управлении проектами
Информационная система предприятия разрабатывается как некоторый проект. Многие особенности управления проектами и фазы разработки проекта (фазы жизненного цикла) являются общими, не зависящими не только от предметной области, но и от характера проекта (неважно, инженерный это проект или экономический). Поэтому имеет смысл вначале рассмотреть ряд общих вопросов управления проектами.
[bookmark: _Toc69119109][bookmark: _Toc82244669]3.1.1. Понятие проекта
Проект - это ограниченное по времени целенаправленное изменение отдельной системы с изначально четко определенными целями, достижение которых определяет завершение проекта, а также с установленными требованиями к срокам, результатам, риску, рамкам расходования средств и ресурсов и к организационной структуре.
Можно выделить следующие основные отличительные признаки проекта как объекта управления:
изменчивость - целенаправленный перевод системы из существующего в некоторое желаемое состояние, описываемое в терминах целей проекта;
ограниченность конечной цели;
ограниченность продолжительности;
ограниченность бюджета;
ограниченность требуемых ресурсов;
новизна для предприятия, для которого реализуется проект;
комплексность - наличие большого числа факторов, прямо или косвенно влияющих на прогресс и результаты проекта;
правовое и организационное обеспечение - создание специфической организационной структуры на время реализации проекта.
Рассматривая планирование проектов и управление ими, необходимо четко осознавать, что речь идет об управлении неким динамическим объектом. Поэтому система управления проектом должна быть достаточно гибкой, чтобы допускать возможность модификации без глобальных изменений в рабочей программе.
В системном плане проект может быть представлен «черным ящиком», входом которого являются технические требования и условия финансирования, а итогом работы - достижение требуемого результата (рис. 3.1). Выполнение работ обеспечивается наличием необходимых ресурсов:
материалов;
оборудования;
человеческих ресурсов.
Эффективность работ достигается за счет управления процессом реализации проекта, которое обеспечивает распределение ресурсов, координацию выполняемой последовательности работ и компенсацию внутренних и внешних возмущающих воздействий.

Рис. 3.1. Представление проекта в виде "черного ящика"

С точки зрения теории систем управления проект как объект управления должен быть наблюдаемым и управляемым, то есть выделяются некоторые характеристики, по которым можно постоянно контролировать ход выполнения проекта (свойство наблюдаемости).
Кроме того, необходимы механизмы своевременного воздействия на ход реализации проекта (свойство управляемости).
Свойство управляемости особенно актуально в условиях неопределенности и изменчивости предметной области, которые нередко сопутствуют проектам по разработке информационных систем.
Для обоснования целесообразности и осуществимости проекта, анализа хода его реализации, а также для заключительной оценки степени достижения поставленных целей проекта и сравнения фактических результатов с запланированными существует ряд характеристик проекта.
К важнейшим из них относятся технико-экономические показатели:
объем работ;
сроки выполнения:
себестоимость;
экономическая эффективность, обеспечиваемая реализацией проекта;
социальная и общественная значимость проекта.
[bookmark: _Toc69119110][bookmark: _Toc82244670]3.1.2. Классификация проектов
Проекты могут сильно отличаться по сфере приложения, составу, предметной области, масштабам, длительности, составу участников, степени сложности, значимости результатов и т.п. Проекты могут быть классифицированы по самым различным признакам. Отметим основные из них.
Класс проекта определяется но составу и структуре проекта. Обычно различают:
монопроект (отдельный проект, который может быть любого типа, вида и масштаба);
мультипроект (комплексный проект, состоящий из ряда монопроектов и требующий применения многопроектного управления).
Тип проекта определяется по основным сферам деятельности, в которых осуществляется проект. Можно выделить пять основных типов проекта:
технический;
организационный;
экономический;
социальный;
смешанный.
ПРИМЕЧАНИЕ: Разработка информационных систем относится, скорее всего, к техническим проектам, которые имеют следующие особенности:
главная цель проекта четко определена, но отдельные цели должны уточняться по мере достижения частных результатов;
срок завершения и продолжительность проекта определены заранее, желательно их точное соблюдение, однако они также могут корректироваться в зависимости от полученных промежуточных результатов и общего прогресса проекта.
Масштаб проекта определяется по размерам бюджета и количеству участников:
мелкие проекты;
малые проекты;
средние проекты;
крупные проекты.
Можно также рассматривать масштабы проектов в более конкретной форме - отраслевые, корпоративные, ведомственные проекты, проекты одного предприятия.
[bookmark: _Toc69119111][bookmark: _Toc82244671]3.1.3. Основные фазы проектирования информационной системы
Каждый проект, независимо от сложности и объема работ, необходимых для его выполнения, проходит в своем развитии определенные состояния: от состояния, когда "проекта еще нет", до состояния, когда "проекта уже нет". Совокупность ступеней развития от возникновения идеи до полного завершения проекта принято разделять на фазы (стадии, этапы).
В определении количества фаз и их содержания имеются некоторые отличия, поскольку эти характеристики во многом зависят от условий осуществления конкретного проекта и опыта основных участников. Тем не менее, логика и основное содержание процесса разработки информационной системы почти во всех случаях являются общими. Можно выделить следующие фазы развития информационной системы:
формирование концепции;
разработка технического задания;
проектирование;
изготовление;
ввод системы в эксплуатацию.

Рассмотрим каждую из них более подробно.
Концептуальная фаза
Главным содержанием работ на этой фазе является определение проекта, разработка его концепции, включающая:
формирование идеи, постановку целей;
формирование ключевой команды проекта;
изучение мотивации и требовании заказчика и других участников:
сбор исходных данных и анализ существующего состояния;
определение основных требований и ограничений, требуемых материальных, финансовых и трудовых ресурсов;
сравнительную оценку альтернатив;
представление предложений, их экспертизу и утверждение.
Разработка технического предложения
Главным содержанием этой фазы является разработка технического предложения и переговоры с заказчиком о заключении контракта. Общее содержание работ этой фазы:
разработка основного содержания проекта, базовой структуры проекта;
разработка и утверждение технического задания;
планирование, декомпозиция базовой структурной модели проекта:
составление сметы и бюджета проекта, определение потребности в ресурсах;
разработка календарных планов и укрупненных графиков работ;
подписание контракта с заказчиком;
ввод в действие средств коммуникации участников проекта и контроля за ходом работ.
Проектирование
На этой фазе определяются подсистемы, их взаимосвязи, выбираются наиболее эффективные способы выполнения проекта и использования ресурсов. Характерные работы этой фазы:
выполнение базовых проектных работ;
разработка частных технических задании;
выполнение концептуального проектирования;
составление технических спецификаций и инструкций;
представление проектной разработки, экспертиза и утверждение,
Разработка
На этой фазе производятся координация и оперативный контроль работ по проекту, осуществляется изготовление подсистем, их объединение и тестирование. Основное содержание:
выполнение работ по разработке программного обеспечения:
выполнение подготовки к внедрению системы;
контроль и регулирование основных показателей проекта.
Ввод системы в эксплуатацию
На этой фазе проводятся испытания, опытная эксплуатация системы в реальных условиях, ведутся переговоры о результатах выполнения проекта и о возможных новых контрактах. Основные виды работ:
комплексные испытания;
подготовка кадров для эксплуатации создаваемой системы;
подготовка рабочей документации, сдача системы заказчику и ввод ее в эксплуатацию;
сопровождение, поддержка, сервисное обслуживание;
оценка результатов проекта и подготовка итоговых документов;
разрешение конфликтных ситуации и закрытие работ по проекту;
накопление опытных данных для последующих проектов, анализ опыта, состояния, определение направлений развития.

Начальные фазы проекта имеют решающее влияние на достигаемый результат, так как в них принимаются основные решения, определяющие качество информационной системы. При этом обычно 30 % вклада в конечный результат проекта вносят фазы концепции и предложения, 20 % - фаза проектирования, 20 % - фаза изготовления, 30 % - фаза сдачи объекта и завершения проекта.

Кроме того, на обнаружение ошибок, допущенных на стадии системного проектирования, расходуется примерно и два раза больше времени, чем на последующих фазах, а их исправление обходится в пять раз дороже. Поэтому на начальных стадиях проекта разработку следует выполнять особенно тщательно. Наиболее часто на начальных фазах допускаются следующие ошибки:
ошибки в определении интересов заказчика;
концентрация на маловажных, сторонних интересах;
неправильная интерпретация исходной постановки задачи;
неправильное или недостаточное понимание деталей;
неполнота функциональных спецификаций (системных требований);
ошибки в определении требуемых ресурсов и сроков;
редкая проверка на согласованность этапов и отсутствие контроля со стороны заказчика (нет привлечения заказчика).
[bookmark: _Toc69119112][bookmark: _Toc82244672]Тема 4. Типы баз данных
Ядром любой базы данных является модель данных. Модель данных представляет собой множество структур данных, ограничений целостности и операций манипулирования данными. С помощью модели данных могут быть представлены объекты предметной области и взаимосвязи между ними.
Модель данных – совокупность структур данных и операций их обработки.
К числу классических относятся следующие модели данных:
1) Иерархическая модель данных.
Появление иерархической модели связано с тем, что в реальном мире очень многие связи соответствуют иерархии, когда один объект выступает как родительский, а с ним может быть связано множество подчиненных объектов.
2) Сетевая модель данных.
3) Реляционная модель данных.
[bookmark: _Toc69119113][bookmark: _Toc82244673]Тема 5. Реляционная модель данных
Реляционная модель ориентирована на организацию данных в виде двумерных таблиц.
Каждая реляционная таблица обладает следующими свойствами:
каждый элемент таблицы – один элемент данных;
все столбцы в таблице однородные, т.е. все элементы в столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;
каждый столбец имеет уникальное имя;
одинаковые строки в таблице отсутствуют;
порядок следования строк и столбцов может быть произвольным.
Реляционная база данных – это совокупность таблиц, содержащих информацию, которая должна храниться в базе данных.
Набор средств для управления подобным хранилищем называется реляционной системой управления базами данных.

	ФИО
	Муж
	Жена
	Сын
	Дочь
	Внук
	Внучка

	Иванов
	NIL
	Иванова
	NIL
	NIL
	NIL
	NIL

	Сидоров
	NIL
	Сидорова
	NIL
	Ирина
	NIL
	NIL

	Петрова
	Петров
	NIL
	NIL
	NIL
	Сергей
	NIL

	Кирсанов
	NIL
	Кирсанов
	Михаил
	NIL
	NIL
	Юлия

	Петухов
	NIL
	Петухова
	NIL
	NIL
	NIL
	NIL

Рис. 5.1. Реляционная база данных, состоящая из 1-ой таблицы

	ФИО
	Муж
	Жена
	
	ФИО
	Сын
	Дочь

	Иванов
	NIL
	Иванова
	
	Сидоров
	
	Ирина

	Сидоров
	NIL
	Сидорова
	
	Кирсанов
	Михаил
	

	Петрова
	Петров
	NIL
	
	
	
	

	Кирсанов
	NIL
	Кирсанов
	
	ФИО
	Внук
	Внучка

	Петухов
	NIL
	Петухова
	
	Петрова
	Сергей
	

	
	
	
	
	Кирсанов
	
	Юлия

Рис. 5.2. Реляционная база данных, состоящая из 3-х таблиц

Реляционная БД - это БД в которой:
· данные воспринимаются пользователем как таблицы и только как таблицы;
· операторы, с помощью которых пользователь манипулирует данными, служат для генерации новых таблиц на основе старых.

Например, имеется БД из одной таблицы, в которой 3 столбца и 4 строки:

Таблица "Винный погреб"
	Сорт
	Год
	Количество_бутылок

	Каберне
	80
	12

	Рислинг
	89
	14

	Изабелла
	80
	28

	Мадера
	77
	1

С помощью специальных операторов выделим из этой таблицы:

а) подмножество строк

 SELECT Сорт, Год, Количество_бутылок FROM Винный_погреб WHERE Год = 80;

В результате получаем:
	Сорт
	Год
	Количество_бутылок

	Каберне
	80
	12

	Изабелла
	80
	28

б) подмножество столбцов

 SELECT Сорт, Количество_бутылок FROM Винный_погреб

В результате получаем:
	Сорт
	Количество_бутылок

	Каберне
	12

	Рислинг
	14

	Изабелла
	28

	Мадера
	1

Оба результата являются таблицами, а операторы SELECT - это операторы языка запросов к БД, называемого SQL (Structured Query Language – Язык структурированных запросов).
[bookmark: _Toc69119114][bookmark: _Toc82244674]5.1. Учебная БД
Учебная БД состоит из 3 таблиц.

1) Таблица поставщиков товаров "S".
	nomer
	familia
	kapital
	gorod

	S1
	Смит
	20
	Лондон

	S2
	Джонс
	10
	Париж

	S3
	Блейк
	30
	Париж

	S4
	Кларк
	20
	Лондон

	S5
	Адамс
	30
	Саров

2) Таблица деталей, которые они поставляют "P".
	nomer
	nazvan
	zvet
	ves
	gorod

	P1
	Гайка
	Красный
	12
	Лондон

	P2
	Болт
	Зеленый
	17
	Париж

	P3
	Винт
	Голубой
	17
	Рим

	P4
	Винт
	Красный
	14
	Лондон

	P5
	Кулачок
	Голубой
	12
	Париж

	P6
	Блюм
	Красный
	19
	Лондон

3) Таблица поставок (какой поставщик, какие детали поставляет) "SP".
	nomer_s
	nomer_p
	kol

	S1
	P1
	300

	S1
	P2
	200

	S1
	P3
	400

	S1
	P4
	200

	S1
	P5
	100

	S1
	P6
	100

	S2
	P1
	300

	S2
	P2
	400

	S3
	P2
	200

	S4
	P2
	200

	S4
	P4
	300

	S4
	P5
	400

S - поставщики. Каждый поставщик имеет уникальный номер, фамилию (не обязательно уникальную), капитал и местонахождение.
P - детали (их виды). Каждый вид детали имеет уникальный номер, название, цвет, вес и город, где хранится этот вид детали. Каждый вид имеет только один вид и вес и хранится на складе только одного города (упрощение).
SP - поставки деталей. Связывает между собой две предыдущие таблицы.

Например, первая строка связывает поставщика S1 (Смит) с деталью P1 (гайка), т.е. означает поставку трехсот деталей вида P1 поставщиком S1.
Пусть для любого поставщика имеется только одна поставка детали некоторого вида, т.е. пара (nomer_s, nomer_p) является уникальной.
На этом примере отметим несколько важных для РБД обстоятельств:
1) Значения данных во всех клетках таблицы являются одиночными, а не множествами, поэтому в таблице SP имеем:
S2 P1
S2 P2
а не так:
S2 {P1, P2}
2) В каждом столбце хранятся данные только одного типа.
3) БД представляется только в виде явных значений данных. Не существует никаких явных связей и указателей, соединяющих одну таблицу с другой. Связь представляется не с помощью указателя, а значениями клеток в таблицах.
4) Строки в таблицах не требуют никакого упорядочивания.
5) Редко возникают ситуации, когда упорядочение столбцов является существенным. Порядок столбцов в РБД, как правило, не имеет значения.
[bookmark: _Toc69119115][bookmark: _Toc82244675]5.2. Создание таблиц
Структура БД определяется оператором CREATE.

 CREATE TABLE S (
 nomer CHAR(5),
 familia CHAR(20),
 kapital SMALLINT,
 gorod CHAR(15));

 CREATE TABLE P (
 nomer CHAR(6),
 nazvanie CHAR(20),
 zvet CHAR(7),
 ves SMALLINT,
 gorod CHAR(15));

 CREATE TABLE SP (
 nomer_s CHAR(5),
 nomer_p CHAR(6),
 kol INTEGER);

Это операторы создания таблиц языка SQL. Они создают имена таблиц, столбцов и типы данных для этих столбцов.
Оператор CREATE, как и все операторы SQL, выполняемый. Как только СУБД его исполнит, появится таблица, которая будет пустой, т.е. будет содержать лишь заголовки столбцов. Для наполнения таблиц есть другие операторы.
[bookmark: _Toc69119116][bookmark: _Toc82244676]
5.3. Типы данных в БД
1. Символьный - CHAR(<длина>). Длина <= 32767.
2. Целочисленный со знаком
а) INTEGER <= | 2 147 483 647 |
б) SMALLINT <= | 32767 |
3. Действительное число - FLOAT
Содержит 7 значащих десятичных цифр (доверительные).
1.175494351E-38 - самое маленькое
3.402823446E+38 - самое большое
4. Дата – DATE. 1 янв 100 ... 29 фев 32768
[bookmark: _Toc69119117][bookmark: _Toc82244677]Тема 6. Выборка данных из БД
Пример по учебной БД: Выбрать номера и капиталы всех поставщиков из Парижа.
Выборка данных делается с помощью оператора SELECT.
SELECT nomer, kapital FROM S WHERE gorod='Париж'

Результат:
	nomer
	kapital

	S2
	10

	S3
	30

Общий, но не полный вид оператора SELECT.

SELECT [DISTINCT] <список элементов> FROM <список таблиц>
[WHERE <условия>]
[GROUP BY <список столбцов>]
[ORDER BY <список сортировки>]

Серия примеров.
1. Простая выборка. Выбрать номера всех поставляемых деталей.

SELECT nomer_p FROM SP

Результат:
	nomer_p

	P1

	P2

	P3

	P4

	P5

	P6

	P1

	P2

	P2

	P2

	P4

	P5

2. Выборка с исключением дубликатов.

SELECT DISTINCT nomer_p FROM SP.

Результат:
	nomer_p

	P1

	P2

	P3

	P4

	P5

	P6

3. Выборка вычисляемых значений. Выбрать номера и капиталы всех поставщиков в рублях, если в таблице S капиталы заданы в $.

SELECT nomer, kapital*30 FROM S

Результат:
	nomer
	COLUMN2

	S1
	600

	S2
	300

	S3
	900

	S4
	600

	S5
	900

Части SELECT и WHERE могут содержать арифметические выражения и константы.

SELECT nomer, 'Капитал в рублях =', kapital*30 FROM S

Результат:
	nomer
	COLUMN2
	COLUMN3

	S1
	Капитал в рублях =
	600

	S2
	Капитал в рублях =
	300

	S3
	Капитал в рублях =
	900

	S4
	Капитал в рублях =
	600

	S5
	Капитал в рублях =
	900

4. Выборка всех столбцов. Выбрать все сведения обо всех поставщиках.

SELECT * FROM S

Результат: копия таблицы S.
Этот оператор эквивалентен по своему действию оператору:
SELECT nomer, familia, kapital, gorod FROM S.

Звездочка ("*") обозначает список всех столбцов в таблице(ах), указанных в части FROM в том порядке, в котором эти столбцы заданы в операторе CREATE TABLE. Звездочка может дополняться именем таблицы.
SELECT S.* FROM S

5. Ограниченная выборка. Выбрать номера поставщиков из Парижа, капитал которых больше 20.

SELECT nomer FROM S WHERE (kapital>20) AND (gorod='Париж')

Результат:
	nomer

	S3

Условие части WHERE может включать в себя
· операции сравнения: =, <>, >, >=, <=, <;
· двоичной алгебры: AND, OR, NOT;
· операции принадлежности: IN, NOT IN;
· операции похожести: LIKE;
· скобки: ().

6. Выборка с упорядочением. Выбрать номера и капиталы поставщиков из Парижа в порядке убывания их состояния (размера капитала).

SELECT nomer, kapital FROM S WHERE gorod='Париж' ORDER BY kapital DESC

ASC - упорядочение по возрастанию значений (по умолчанию).
DESC - упорядочение по убыванию значений.

Каждый столбец, упомянутый в части ORDER BY должен присутствовать в результирующей таблице, поэтому, например, такой оператор недопустим:

SELECT nomer FROM S ORDER BY gorod;

Правильно будет:

SELECT nomer, gorod FROM S ORDER BY gorod;

7. Выборка с применением принадлежности (IN). Выбрать детали, вес которых равен: 12, 16, 17.

SELECT * FROM P WHERE ves IN (12, 16, 17);

Результат:
	nomer
	nazvan
	zvet
	ves
	gorod

	P1
	Гайка
	Красный
	12
	Лондон

	P2
	Болт
	Зеленый
	17
	Париж

	P3
	Винт
	Голубой
	17
	Рим

	P5
	Кулачок
	Голубой
	12
	Париж

8. Выборка с применением похожести (LIKE). Выбрать все детали, название которых начинается с буквы 'в'.

SELECT * FROM P WHERE nazvan LIKE 'в%';

Результат:
	nomer
	nazvan
	zvet
	ves
	gorod

	P3
	Винт
	Голубой
	17
	Рим

	P4
	Винт
	Красный
	14
	Лондон

Общий вид оператора похожести: <имя столбца> LIKE <строковая константа>

<имя столбца> типа CHAR.
<строковая константа> - это образец, в котором:
· "_" - любой одиночный символ,
· "%" - любое количество любых символов, в том числе нулевое, остальные символы означают сами себя.
[bookmark: _Toc69119118][bookmark: _Toc82244678]Тема 7. Выборка данных. Соединение
Операция, в которой выборка данных проводится более чем из одной таблицы называется "соединение". Результирующая таблица также называется соединением.

Простое эквисоединение
Пример:
Выбрать все данные о поставщиках и деталях, размещенных в одном и том же городе, то есть соразмещенных.

SELECT S.*, P.* FROM S, P WHERE S.gorod=P.gorod;

Очевидно, что нужные данные получаются из двух таблиц S и P - они указаны в части FROM, а условие соединения записывается в части WHERE.

	Поля таблицы "S"
	Поля таблицы "P"

	nomer
	familia
	kapital
	gorod
	nomer
	nazvan
	zvet
	ves
	gorod

	S1
	Смит
	20
	Лондон
	P1
	Гайка
	Красный
	12
	Лондон

	S1
	Смит
	20
	Лондон
	P4
	Винт
	Красный
	14
	Лондон

	S1
	Смит
	20
	Лондон
	P6
	Блюм
	Красный
	19
	Лондон

	S2
	Джонс
	10
	Париж
	P2
	Болт
	Зеленый
	17
	Париж

	S2
	Джонс
	10
	Париж
	P5
	Кулачок
	Голубой
	12
	Париж

	S3
	Блейк
	30
	Париж
	P2
	Болт
	Зеленый
	17
	Париж

	S3
	Блейк
	30
	Париж
	P5
	Кулачок
	Голубой
	12
	Париж

	S4
	Кларк
	20
	Лондон
	P1
	Гайка
	Красный
	12
	Лондон

	S4
	Кларк
	20
	Лондон
	P4
	Винт
	Красный
	14
	Лондон

	S4
	Кларк
	20
	Лондон
	P6
	Блюм
	Красный
	19
	Лондон

Поставщик из Сарова не попал в результирующую таблицу, так как в этом городе не хранятся никакие детали. Аналогично, результат не содержит детали P3, так как ее город - Рим.
Некоторые замечания
· Оба столбца в условии соединения должны быть либо числовыми, либо строковыми.
· Совсем не обязательно, чтобы столбцы в условии соединения назывались одинаково, хотя это бывает часто.
· В случае операции равенства ("=") в условии соединения, оно называется эквисоединением; в условии соединения могут быть и другие операции.
· Часть WHERE может включать и другие дополнительные условия, помимо условия соединения.
· Можно предусмотреть выборку не всех, а некоторых столбцов; кроме того, первоначальный оператор можно еще более упростить:

 SELECT * FROM S, P WHERE S.gorod=P.gorod;

· По определению, эквисоединение должно порождать два полностью одинаковых столбца; если исключить один из этих столбцов, то результат будет называться естественным соединением.
· Можно образовать соединение любого числа таблиц.

Соединение по условию "больше, чем"
Пример:
Выбрать все данные о поставщиках и деталях таких, что город поставщика следует за городом, где хранится деталь в алфавитном порядке.

SELECT S.*, P.* FROM S, P WHERE S.gorod > P.gorod;

Соединение с дополнительным условием
Пример:
Выбрать все комбинации номеров поставщиков, номеров деталей и состояний такие, что поставщик и деталь соразмещены. Опустить поставщиков с капиталом 20.

SELECT S.nomer, P.nomer, S.kapital FROM S, P
WHERE (S.gorod = P.gorod) AND (kapital <> 20);

S.gorod = P.gorod - условие соединения
kapital <> 20 - дополнительное условие

Результат:
	nomer
	nomer
	kapital

	S2
	P2
	10

	S2
	P5
	10

	S3
	P2
	30

	S3
	P5
	30

Соединение таблицы с ней самой
Пример:
Выбрать все пары номеров поставщиков такие, что оба поставщика находятся в одном и том же городе.

 SELECT PERV.nomer, VTOR.nomer FROM S PERV, S VTOR
 WHERE PERV.gorod = VTOR.gorod;

Таблица S дважды упоминается в части FROM, чтобы различать два ее упоминания вводятся произвольные псевдонимы.

Результат:
	nomer
	nomer

	S1
	S1

	S1
	S4

	S2
	S2

	S2
	S3

	S3
	S3

	S3
	S2

	S4
	S4

	S4
	S1

	S5
	S5

Можно привести этот результат в порядок, если расширить часть WHERE.

SELECT PERV.nomer, VTOR.nomer
FROM S PERV, S VTOR
WHERE (PERV.gorod = VTOR.gorod) AND (PERV.nomer < VTOR.nomer);

Последнее условие ("<") даст двоякий эффект:
а) оно исключает пары номеров вида (x,x);
б) гарантирует, что пары вида (x,y) и (y,x) не будут появляться одновременно.

Результат:
	nomer
	nomer

	S1
	S4

	S2
	S3

[bookmark: _Toc69119119][bookmark: _Toc82244679]Тема 8: Выборка. Подзапрос
Подзапрос - это SELECT, который вложен во внешний оператор SELECT.
Обычно подзапросы требуются для выборки значений, когда во внешнем запросе применяется операция принадлежности (IN).

Простой подзапрос
Пример:
Выбрать фамилии поставщиков, которые поставляют деталь P2.

SELECT familia FROM S
WHERE nomer IN (SELECT nomer_s FROM SP WHERE nomer_p = 'P2')

Результат:
	familia

	Смит

	Джонс

	Блейк

	Кларк

При обработке полного запроса сначала обрабатывается подзапрос. Этот подзапрос возвращает множество номеров поставщиков поставляющих деталь P2, а именно множество: ('S1', 'S2', 'S3', 'S4').
Поэтому первоначальный запрос эквивалентен следующему простому запросу:

SELECT familia FROM S WHERE nomer_s IN ('S1', 'S2', 'S3', 'S4');

Задачу из примера можно решить, применяя соединение.

SELECT familia FROM S, SP WHERE (S.nomer = SP.nomer_s) AND (nomer_p = 'P2');

Подзапрос с несколькими уровнями вложенности
Пример:
Выбрать фамилии поставщиков, которые поставляют, по крайней мере, одну красную деталь.

SELECT familia FROM S WHERE nomer_s IN
(SELECT nomer_s FROM SP WHERE nomer_p IN
(SELECT nomer FROM P WHERE zvet = 'красный'))

Результат:
	familia

	Смит

	Джонс

	Кларк

Если использовать соединение трех таблиц, то результат следующий:

Результат:
	familia

	Смит

	Джонс

	Кларк

	 Смит

	Смит

Подзапрос с операцией отличной от IN

Пример:
Выбрать номера поставщиков, находящихся в том же городе, что и поставщик S1.

SELECT nomer FROM S WHERE gorod =
(SELECT gorod FROM S WHERE nomer = 'S1');

Результат:
	nomer

	S1

	S4

Если заранее известно, что подзапрос возвратит в точности 1 значение, то вместо IN можно употребить операцию сравнения (=, <>, >, ...). Однако, если подзапрос вернет более одного значения, то возникнет ошибка.

Стандартные функции
На вопросы типа "сколько строк в таблице?" отвечают стандартные функции языка SQL (агрегирующие функции):

COUNT - количество строк
SUM - сумма значений в столбце
AVG - среднее арифметическое по значениям в столбце
MAX - наибольшее значение в столбце
MIN - наименьшее значение в столбце

SUM и AVG применяются только к столбцам числового типа.

После имени функции, в скобках, нужно записывать имя столбца, а перед ним может присутствовать слово DISTINCT. Оно указывает, что дубликаты следует исключить перед тем как будет применяться функция.

Специальный вид функции COUNT(*) предназначен для подсчета всех строк в таблице, без исключения дубликатов.

Функция в части SELECT

Пример:
Подсчитать общее количество поставщиков.

SELECT COUNT(*) FROM S

Результат:
	COUNT

	5

Функция в части SELECT с исключением дубликатов

Пример:
Подсчитать общее количество поставщиков, поставляющих детали.

SELECT COUNT(DISTINCT nomer_s) FROM SP;

Результат:
	COUNT

	4

Функция в части SELECT с условием в части WHERE

Пример:
Подсчитать общее количество поставляемых деталей P2 (сколько деталей по всем поставкам?).

SELECT SUM (kol) FROM SP WHERE nomer_p = 'P2';

Результат:
	SUM

	1000

Группирование записей

Пример:
Требуется подсчитать общее количество поставляемых деталей по каждому виду деталей. То есть, по каждому виду выдать номер детали и суммарный объем поставок.

SELECT nomer_p, SUM(kol) FROM SP GROUP BY nomer_p;

Результат:
	nomer_p
	SUM

	P1
	600

	P2
	1000

	P3
	400

	P4
	500

	P5
	500

	P6
	100

Как исполняется такой оператор?

1) Часть GROUP BY перекомпоновывает таблицу, указанную в части FROM в группы, таким образом, чтобы в каждой группе все строки имели одно и то же значение в столбце, указанном в GROUP BY.
2) К каждой группе перекомпонованной таблицы (а не к каждой исходной строке) применяется часть SELECT.

Каждое выражение в части SELECT должно принимать единственное значение для группы. То есть, оно может быть либо самим столбцом в части GROUP BY, либо арифметическим выражением, содержащим такой столбец, либо константой, либо функцией (например, SUM), которая сводит разные значения к одному.
[bookmark: _Toc69119120][bookmark: _Toc82244680]Тема 9. Обновление строк в таблице
Оператор обновления (модификации) строк в одной таблице имеет вид:

UPDATE <имя таблицы>
SET <имя столбца> = <выражение>{, <имя столбца> = <выражение>}
[WHERE <условие>];

Все строки в таблице, которые удовлетворяют <условию>, изменяются в соответствии с присваиваниями в части SET.

Примеры:

Обновление единственной строки

Изменить цвет детали P2 на желтый и увеличить ее вес на 5.

UPDATE P SET zvet='желтый', ves=ves+5 WHERE nomer='P2';

Обновление нескольких строк

UPDATE S SET kapital=kapital*2 WHERE gorod='Лондон'

Обновление нескольких таблиц

Изменить номер поставщика с S2 на S9.

UPDATE S SET nomer='S9' WHERE nomer='S2';

UPDATE SP SET nomer='S9' WHERE nomer='S2';

В одном операторе невозможно обновить две таблицы!

После первого оператора БД стала противоречивой. Теперь в ней есть поставки у которой нет поставщика. В этом противоречивом состоянии БД будет находиться до завершения второго оператора. Изменения порядка операторов принципиально ничего не меняет. Поэтому, с точки зрения целостности БД важно обеспечить завершение обоих операторов, а не одного из них (см. дальше).
[bookmark: _Toc69119121][bookmark: _Toc82244681]Тема 10. Удаление строк

DELETE
FROM <имя таблицы>
[WHERE <условие>];

Этот оператор удаляет все строки из таблицы, которые удовлетворяют <условию>.
[bookmark: _Toc69119122][bookmark: _Toc82244682]Тема 11. Вставка строк
Две формы оператора INSERT
а)
 INSERT
 INTO <имя таблицы> [(<имя столбца>{, <имя столбца>})]
 VALUES (<константа>{, <константа>});

б)
 INSERT
 INTO <имя таблицы> [(<имя столбца>{, <имя столбца>})]
 <подзапрос>;

В форме (а) в таблицу вставляется строка из констант, перечисленных в части VALUES. Причем, i-ая константа соответствует i-му столбцу в части INTO.
В форме (б) сначала вычисляется <подзапрос> (результат которого - таблица) и результат подзапроса вставляется в таблицу <имя таблицы>.

Пример:
Добавить в таблицу P деталь P7: город Москва, вес 2, название и цвет пока не известны.

INSERT INTO P (nomer, gorod, ves) VALUES ('P7', 'Москва', 2);

В таблице P появляется новая строка. Порядок столбцов в части INTO не обязательно должен совпадать с порядком столбцов при создании таблицы.

Вставка единственной строки с опущенными именами столбцов

Добавить в таблицу P деталь P8: название "звездочка", цвет розовый, вес 14, город Берлин.

INSERT INTO P VALUES ('P8', 'звездочка', 'розовый', 14, 'Берлин');

Если имена столбцов не заданы, то предполагается перечисление всех столбцов таблицы в порядке их перечисления в операторе CREATE.

Вставка множества строк

Для каждой поставляемой детали получить ее номер и объем ее поставки, сохранить результат в отдельной таблице.

CREATE TABLE VREMEN
(nomer CHAR(6),
 sum_postavki INTEGER)

INSERT INTO VREMEN SELECT nomer_p, SUM(kol) FROM SPGROUP BY nomer_p
[bookmark: _Toc69119123][bookmark: _Toc82244683]Тема 12. Управление транзакциями
Вернемся к примеру в котором заменяется номер поставщика S2 на S9. Обобщим этот пример. Допустим, есть некий язык программирования, внутри которого можно выполнять операторы SQL. Напишем процедуру, которая будет менять номер поставщика с SX на SY.

Trans: proc(SX, SY);
 ON ERROR: begin ROLLBACK; RETURN end;
 EXEC UPDATE S SET nomer=SY WHERE nomer=SX;
 EXEC UPDATE SP SET nomer_s=SY WHERE nomer_s=SX;
 EXEC COMMIT;
end;

Эта процедура воспринимается ее пользователем как неделимая (атомарная операция). На самом деле эта процедура состоит из 2-х операторов SQL. И между этими операторами нарушается согласованность БД (есть поставки у которых нет поставщика). Чтобы сохранить согласованность БД нужно уметь выполнять последовательность операторов SQL как неделимую операцию.
Транзакция - это последовательность операторов SQL, которая либо выполняется целиком, либо не выполняется совсем.
Предполагается при этом, что транзакция переведет некоторое согласованное состояние БД в другое согласованное состояние, но не гарантирует сохранение согласованности во все промежуточные моменты времени.

· Последовательность может состоять из одного оператора SQL.
· Транзакцию создает программист.

СУБД гарантирует, что если транзакция проводила некоторые изменения в БД (UPDATE, INSERT, DELETE) и затем, по какой-либо причине, произошла ошибка до нормального завершения транзакции, то эти изменения будут отменены.
Таким образом, транзакция либо полностью исполняется, либо полностью отменяется, как будто бы она не исполнялась вообще.
Вопрос: Как СУБД узнает когда начинается и когда заканчивается транзакция?

Транзакция заканчивается, чаще всего, как и в этом примере, с помощью операторов COMMIT (принять, подтвердить) и ROLLBACK (отменить, откатиться).
Оператор COMMIT сообщает СУБД об успешном завершении транзакции, о том, что БД вновь должна находиться в согласованном состоянии и все изменения в БД следует сделать постоянными.
Напротив, оператор ROLLBACK сообщает СУБД о неудачном завершении транзакции, о том, что БД находится, возможно, в противоречивом состоянии и что все сделанные внутри транзакции изменения (UPDATE, INSERT, DELETE) следует отменить.
Даже если во время исполнения транзакции сломается компьютер, то тот оператор ROLLBACK, который должен был выполняться по ошибке, будет все равно выполнен при рестарте СУБД.

Как отменяются изменения?
С помощью журнала, в котором записываются все операции изменения БД.
В частности, значения таблиц до и после изменения.

Транзакция начинается:
· первым оператором, после соединения с БД;
· первым оператором, после конца предыдущей транзакции.

Транзакция заканчивается:
· оператором COMMIT;
· оператором ROLLBACK;
· отсоединением от БД, причем предполагается ROLLBACK.
[bookmark: _Toc69119124][bookmark: _Toc82244684]12.1. Три проблемы, связанные с параллельностью транзакций
Всякая СУБД, которая позволяет любому количеству пользователей одновременно пользоваться данными в одной и той же БД, должна иметь механизм, обеспечивающий независимость пользователей друг от друга, по крайней мере, кажущуюся.
Такой механизм нужен чтобы избежать трех случаев ошибочного исполнения транзакции, когда транзакция правильная сама по себе, может приводить к ошибочному результату из-за вмешательства со стороны некоторой другой транзакции, тоже правильной.
Таким образом, будем обсуждать чередование операторов SQL, по крайней мере, в двух параллельных и правильных транзакциях, которое может привести к ошибочному в целом результату.
[bookmark: _Toc69119125][bookmark: _Toc82244685]12.1.1. Проблема утраченного обновления

-------------------------+-----------------------+-----------------
Время	TA		 ! Значения	 	 ! TB
-------------------------+-----------------------+-----------------
t0	start !			 !
t1	Сч1=SELECT R ! Сч1(TA)=50, R=50	 !
t2			 !			 ! start
t3			 ! Сч1(TB)=50, R=50	 ! Сч1=SELECT R
t4	UPDATE R=Сч1+15 ! R=65			 !
t5	COMMIT		 !			 !
t6			 ! R=40			 ! UPDATE R=Сч1-10
t7			 !			 ! COMMIT
-------------------------+-----------------------+-----------------

TA выбирает строку R в t1, TB - в t3. TA обновляет R в t4, исходя из значений "увиденных" в t1, а TB обновляет эту же строку в t6, исходя из значений "увиденных" в t3. Очевидно, что в итоге в R остается лишь значение записанное TB, которая перекрывает значение записанное TA не глядя на него.
[bookmark: _Toc69119126][bookmark: _Toc82244686]12.1.2. Проблема зависимости от неподтвержденных обновлений
Возникает в том случае, если одной транзакции позволяется выбрать данные из строки, которая уже была обновлена другой транзакцией, но не успела подтвердить обновление.

------------------------+-----------------------+-----------------
Время	TA		 ! Значения	 ! TB
------------------------+-----------------------+-----------------
t0			 ! R=50			 ! start
t1			 ! R=20			 ! UPDATE R=20
t2	start		 !			 !
t3	Сч1=SELECT R	 ! Сч1(TA)=20		 !
t4			 ! R=50, Сч1(TA)=20 ! ROLLBACK
------------------------+------------------------+-----------------

TA "видит" неподтвержденное изменение, которое позже отменяется TB.
Следовательно, TA работает при ошибочном предположении, что R имеет значение 20, а на самом деле оно 50.
[bookmark: _Toc69119127][bookmark: _Toc82244687]12.1.3. Проблема противоречивости

-------------------------+-----------------------+-----------------
Время	TA		 ! Значения	 ! TB
-------------------------+-----------------------+-----------------
t0	start ! R1=40, R2=50, R3=30 !
t1	Сч1=SELECT R1 ! Сч1(TA)=40,Сум(TA)=40 !
t2	Сч2=SELECT R2	 ! Сч2(TA)=50,Сум(TA)=90 !
t3	 ! 			 ! start
t4 		 ! Сч3(TB)=30	 ! Сч3=SELECT R3
t5			 ! R3=20			 ! UPDATE R3=Сч3-10
t6			 ! Сч1(TB)=40	 ! Сч1=SELECT R1
t7			 ! R1=50			 ! UPDATE R1=Сч1+10
t8			 !			 ! COMMIT
t9	Сч3=SELECT R3	 ! Сч3(TA)=20,Сум(TA)=110!
------------------------+------------------------+-----------------
Сум(TA) должна = 120

Здесь TA суммирует остатки на счетах, а TB переносит сумму 10 со счета 3 на счет 1. В результате параллельного выполнения TA получает неверную сумму.
Различия между этой и предыдущей проблемой в том, что здесь TA не зависит от неподтвержденных изменений, поскольку TB сделало все изменения постоянными еще до того, как TA "увидела" счет 3.

Все три случая ошибочного выполнения транзакций возникают только тогда, когда хотя бы одна транзакция изменяет данные в БД. Конфликтов не бывает, когда все транзакции только выбирают (читают) данные.
[bookmark: _Toc69119128][bookmark: _Toc82244688]
12.2. Решение проблем параллелизма
Существует два основных подхода к управлению параллельными транзакциями:
- основанный на захвате объекта БД (блокировке);
- основанный на метках времени (многоверсионных объектах).
[bookmark: _Toc69119129][bookmark: _Toc82244689]12.2.1. Управление с помощью захватов (блокировок)
Главная идея захвата проста: если для транзакции нужно, чтобы некоторый объект БД (обычно строка таблицы) не изменялся до ее завершения, то она устанавливает захват этого объекта. Захват заключается в том, что объект изолируется от других транзакций.

Различают два вида режимов захвата:
1) совместный режим (режим С) и
2) монопольный режим (режим М).

Ради упрощения будем обсуждать захваты только одной строки в таблице.

Алгоритм захватов

1. Если TA устанавливает М-захват строки R, то запрос из TB на любого типа захват строки R приведет к тому, что TB перейдет в состояние блокировки.
TB будет находиться в этом состоянии, пока TA не снимет захват.
2. Если TA устанавливает С-захват на строку R, то:
а) запрос из TB на М-захват строки R заставит TB перейти в состояние блокировки и TB будет заблокирована, пока TA не снимет свой захват.
б) запрос из TB на С-захват строки R будет удовлетворен, то есть TB также будет удерживать С-захват строки R.

Обсуждение п.2:
 - в отсутствии захватов строки R будет удовлетворен запрос на захват любого вида этой строки;
 - во время М-захвата строки R в запросе любого вида на захват R будет отказано;
 - во время С-захвата строки R будут удовлетворяться только С-запросы.

3. Запросы транзакций на захват строки всегда являются неявными. Когда транзакция исполняет оператор SELECT она автоматически устанавливает С-захват. Когда транзакция изменяет, добавляет, удаляет строку, она автоматически устанавливает М-захват. Если же транзакция получила строку R в С-захват, а потом стала изменять строку R, то транзакция автоматически повышает вид захвата с С на М.

Решение трех проблем с помощью механизма блокировок в СУБД SQL Anywhere

1*) Решение первой проблемы (утраченное обновление)
	Время
	ТА
	Значения
	ТВ
	Комментарий

	t1
	start
	
	
	

	t2
	Сч1=Select R
	Сч1 (ТА)=50
	
	С-запрос на R от ТА и захват

	t3
	
	
	start
	

	t4
	
	Сч1 (ТВ)=50
	Сч1=Select R
	С-запрос на R от ТВ и захват

	t5
	UPDATE R=Сч1+15
	
	
	М-запрос на R от ТА и отказ

	t6
	ждать
	
	
	ТА ждет завершения ТВ

	t7
	
	
	UPDATE R=Сч1+15
	М-запрос на R от ТВ и отказ

	t8
	
	
	ждать
	ТВ ждет завершения ТА

Захваты и тупики
С помощью захватов решается проблема утраченного обновления, но появляется проблема тупика - взаимной блокировки нескольких транзакций, при которой каждая из транзакций ждет, пока другая снимет захват.
Если возникает тупиковая ситуация, то ее обнаруживает и разрушает СУБД.
Чтобы ликвидировать тупик, СУБД выбирает из вовлеченных в тупик транзакций одну - жертву - и принудительно выполняет ее откат.

2*) Решение проблемы зависимости от неподтвержденных обновлений с помощью механизма блокировки
	Время
	ТА
	Значения
	ТВ
	Комментарий

	t0
	
	R=50
	start
	

	t1
	
	R=20
	UPDATE R=20
	М-запрос на R от ТВ и захват

	t2
	start
	
	
	

	t3
	Сч1=SELECT R
	
	
	С-запрос на R от ТА и отказ

	t4
	ждать
	
	
	ТА ждет завершения ТВ (блокир)

	t5
	ждать
	R=50
	ROLLBACK
	ТВ заканчивается откатом, ТА разблокируется

	t6
	Сч1=SELECT R
	Сч1 (ТА)=50, R=50
	
	С-запрос на R от ТА и захват

3*) Решение проблемы противоречивости с помощью механизма блокировки
	Время
	ТА
	Значения
	ТВ
	Комментарий

	t0
	start
	R1=40, R2=50, R3=30
	
	

	t1
	Сч1=SELECT R1
	Сч1 (ТА)=40,
Сум (ТА)=40
	
	С-запрос на R1 от TA и захват

	t2
	Сч2=SELECT R2
	Сч2 (ТА)=50,
Сум (ТА)=90
	
	С-запрос на R2 от TA и захват

	t3
	
	
	start
	

	t4
	
	Сч3 (ТВ)=30
	Сч3=SELECT R3
	С-запрос на R3 от TВ и захват

	t5
	
	R3=20
	UPDATE R3=Сч3-10
	М-запрос на R3 от TB и захват

	t6
	
	Сч1 (ТВ)=40
	Сч1=SELECT R1
	С-запрос на R1 от ТВ и захват

	t7
	
	
	UPDATE R1=Сч1+10
	М-запрос на R1 от ТВ и отказ, т.к. есть С-запрос на R1 от ТА

	t8
	
	
	ждать
	ТВ ждет завершения ТА

	t9
	Сч3=SELECT R3
	
	ждать
	С-запрос на R3 от ТА и отказ, т.к. есть М-запрос на R3 от ТВ

	t10
	ждать
	
	ждать
	ТА ждет завершения ТВ

	
	
	
	
	Тупик, который приведет к принудительному откату одной из транзакций

[bookmark: _Toc69119130][bookmark: _Toc82244690]
12.2.2. Управление на основе многоверсионных объектов с метками времени
Главная идея этого подхода не в том, чтобы изолировать объект в БД от другой транзакции, а в том, чтобы создать отдельную копию объекта для каждой параллельной транзакции. Тогда транзакции от своего начала и до конца будут работать с собственными копиями объекта. По завершении транзакции все сделанные ей изменения могут быть перенесены из ее копии объекта в БД.

Некоторые обстоятельства:

1) Очевидно, что беспрепятственно изменить свою копию сможет лишь одна из параллельных транзакций, которая сделает это первой (TA). СУБД не позволит другой транзакции (TB) изменить тот же объект и, либо аварийно завершит TB, либо переведет TB в ожидание до конца TA, что зависит от заданных для TB условий старта.

Если TB будет ждать завершения TA, то возможны два исхода:
а) TA подтверждает свои изменения (COMMIT), тогда TB аварийно завершается;
б) TA отменяет свои изменения (ROLLBACK), тогда TB переносит свои изменения в БД и продолжает работать.

2) Каждая параллельная транзакция может беспрепятственно читать и всегда видеть в точности то состояние БД, которое было когда транзакция началась, плюс ее собственные изменения, но не может видеть изменения в БД, сделанные другими параллельными транзакциями.

Решение трех проблем с помощью многоверсионных объектов в СУБД Interbase

Объектом для транзакции является строка.

Interbase создает новую версию строки всякий раз, когда какая-либо транзакция изменяет или удаляет эту строку. Interbase помечает эту версию строки временем появления и именем транзакции, которая воздействовала на строку.
По запросу любой транзакции на чтение этой строки, Interbase предоставляет ей самую свежую версию строки, но уже подтвержденную до старта этой транзакции.

1**) Решение первой проблемы (утраченное обновление)

	Время
	ТА
	Значения
	ТВ
	Комментарий

	t0
	
	R (t0, TX)=50
	
	Последняя подтвержденная версия R на t0

	t1
	start
	
	
	

	t2
	Сч1=SELECT R
	Сч1 (ТА)=50
	
	ТА получает подтвержденную версию от времени t0<t1

	t3
	
	
	start
	

	t4
	
	Сч1 (ТВ)=50
	Сч1=SELECT R
	ТВ получает подтвержденную версию от времени t0<t3

	t5
	UPDATE R=Сч1+15
	R (t5, ТА) = 65 ?
	
	Не известно, будет ли подтверждено изменение

	t6
	
	Сч1 (ТВ)=50
	Сч1=SELECT R
	Версия от t5 для TB не доступна, так как t5>t3

	t7
	
	
	UPDATE R=Сч1-10
	TB блокируется, т.к. есть версия R от t5 и t5>t3

	t8
	
	
	ждать
	ТВ ждет завершения ТА

	t9
	COMMIT
	R (t9,TA)=65
	конфликт
	Подтвержденная версия от t9 для TB не доступна, т.к. t9>t3

	t10
	
	
	ROLLBACK
	TB должна отменить свои изменения

	t11
	
	
	start (ТВ')
	

	t12
	
	Сч1 (ТВ')=65
	Сч1=SELECT R
	t12>t9

	t13
	
	R (t13, TB')=55 ?
	UPDATE R=Сч1-10
	

	t14
	
	R (t14, TB')=55
	COMMIT
	

TA беспрепятственно изменило R, поскольку сделало это первой. TB не удалось изменить R, так как она не "видела" самой последней подтвержденной версии.

(1**) решает проблему (1) и, в отличие от (1*), исключает тупиковую ситуацию.

2**) Решение проблемы зависимости от неподтвержденных обновлений с помощью многоверсионных объектов

	Время
	ТА
	Значения
	ТВ
	Комментарий

	t0
	
	R=50
	start
	Последняя подтвержденная версия R на t0

	t1
	
	R(t1,TB)=20 ?
	UPDATE R=20
	Не известно, будет ли подтверждено изменение

	t2
	start
	
	
	

	t3
	Сч1=SELECT R
	R(t3,TA)=50, Сч1(ТА)=50
	
	Последняя подтвержденная версия R на t3

	t4
	
	R=50, R(t4,TA)=50, Сч1(ТА)=50
	ROLLBACK
	ТВ отменяет свои изменения и заканчивается, т.е. изменения ТВ в БД не переносятся

	t5
	
	
	
	ТА может спокойно продолать работу

3**) Решение проблемы противоречивости с помощью многоверсионных объектов

	Время
	ТА
	Значения
	ТВ
	Комментарий

	t0
	start
	R1=40, R2=50, R3=30
	
	Последние подтвержденные версии R1, R2, R3

	t1
	Сч1=SELECT R1
	R1(t1,TA)=40, Сч1(ТА)=40, Сум(ТА)=40
	
	

	t2
	Сч2=SELECT R2
	R1(t2,TA)=50, Сч2(ТА)=50, Сум(ТА)=90
	
	

	t3
	
	R1(TB)=40, R2(TB)=50,
R3(TB)=30
	start
	

	t4
	
	Сч3(ТВ)=30
	Сч3=SELECT R3
	

	t5
	
	R3(TB)=20 ?
	UPDATE R3=Сч3-10
	Не известно, будет ли подтверждено изменение

	t6
	
	Сч1(ТВ)=40
	Сч1=SELECT R1
	

	t7
	
	R1(TB)=50 ?
	UPDATE R1=Сч1+10
	Не известно, будет ли подтверждено изменение

	t8
	
	R1(TB)=50, R3(TB)=20
R1=50, R2=50, R3=20
	COMMIT
	Конфликт: подтвержденные версии R1 и R3 для ТА не доступны, т.к. t8>t0

	t9
	ROLLBACK
	
	
	ТА должна сделать откат

	t10
	start (TA')
	R1(TA')=50, R2(TA')=50,
R3(TA')=20
	
	Последние подтвержденные версии R1, R2, R3

	t11
	Сч1=SELECT R1
	Сч1(ТА')=50, Сум(ТА')=50
	
	

	t12
	Сч2=SELECT R2
	Сч2(ТА')=50, Сум(ТА')=100
	
	50+50=100

	t13
	Сч3=SELECT R3
	Сч3(ТА')=20, Сум(ТА')=120
	
	100+20=120
Получили правильный результат для ТА: 120

[bookmark: _Toc69119131][bookmark: _Toc82244691]Тема 13. Объектно-ориентированное программирование
Существует две модели построения программ:
· процессно-ориентированная;
· объектно-ориентированная.
Процессно-ориентированная. В данной модели программа представляется как ряд последовательно выполняемых операций (процедур). Языки программирования, в которых реализован процессно-ориентированный подход к построению программ, называются процедурными.
Объектно-ориентированная. При использовании данной модели программа рассматривается как совокупность объектов – отдельных фрагментов кода, обеспечивающих выполнение определенных действий и объединяющих данные и методы управления ими.
[bookmark: _Toc69119132][bookmark: _Toc82244692]13.1. Основы языка Object Pascal
[bookmark: _Toc69119133][bookmark: _Toc82244693]13.1.1. Структура программы в Object Pascal
Программа, написанная на языке Object Pascal, состоит из ряда разделов. Начало каждого раздела указывается с помощью специальных зарезервированных слов. В общем виде программа Object Pascal имеет следующий вид:

	Program Name_of_program

Uses
 Unit1, Unit2, Unit3

Label
 Label1, Label2

Type
 id_type1 = type_def1;
 id_type2 = type_def2;

Var
 id_var1: type_def1;
 id_var2, id_var3: id_type2;

Const
 id_const1 = value1;
 id_const2 = value2;
 id_const3 = expression1;

Procedure proc1;
 текст процедуры
Function Func1: type_def1;
 текст функции

begin
 текст программы
end.
	Заголовок программы

Раздел объявления используемых модулей

Раздел объявления используемых меток

Раздел описания типов, определяемых пользователем

Раздел объявления переменных

Раздел описания констант

Раздел объявления процедур и функций, используемых в программе

Заголовок программы. В заголовке после служебного слова Program указывается имя программы.
Раздел объявления модулей. Начало данного раздела указывается с помощью директивы Uses.
Разделов объявления меток, типов, констант и переменных может быть несколько, и они могут следовать в любом порядке.
Раздел объявления меток. Начало раздела указывается с помощью директивы Label.
Раздел описания типов. В Object Pascal существует довольно большое количество стандартных типов. Однако при разработке программ, особенно при использовании объектно-ориентированного программирования, программисту необходима возможность создавать свои типы данных. Для описания пользовательских типов используется раздел объявления типов, начало которого определяет директивы Type. Самым простым вариантом объявления собственного типа является просто объявление типа, аналогично уже существующему, например:
Type
 id_type1 = integer;

Раздел переменных. Начало раздела объявляется с помощью служебного слова Var. В данном разделе должны быть описаны все переменные, которые будут использоваться в программе.
Компилятор Object Pascal не допускает использование переменных, не объявленных в разделе Var. Объявление переменной, не используемой в программе, не приводит к ошибке компиляции, однако компилятор будет выдавать предупреждение о том, что переменная объявлена, но никогда не используется.
При объявлении переменной указывается идентификатор и через двоеточие – тип переменной, например:
var
 id_var1: integer;

Идентификаторы переменных одного типа можно перечислять через запятую:
var
 id_var1, id_var2, id_var3: integer;

Для нестандартных типов имя типа должно быть описано в разделе Type, находящемся выше раздела Var, в котором оно используется.
Раздел констант. Данный раздел содержит объявления констант и начинается с директивы Const. Константа фактически является переменной, значение которой устанавливается не в процессе выполнения программы, а на этапе компиляции. Значение константы не может изменяться программно. В объявлении константы можно использовать не только конкретные значения, но и выражения. Тип константы определяется присваиваемым ей значением или типом результата, получаемого при вычислении выражения.

[bookmark: _Toc69119134][bookmark: _Toc82244694]13.1.2. Типы данных
Простые типы данных
В Object Pascal к простым типам данных относятся:
· порядковые;
· вещественные;
· тип дата/время.
Порядковые типы. Каждый из порядковых типов имеет конечное число значений. Следовательно, их можно упорядочить и с каждым из них сопоставить порядковый номер значения.
В Object Pascal к порядковым типам относят:
· целые;
· логические;
· символьные;
· перечисляемые;
· диапазонные.
Целые типы.
	Название
	Диапазон значений
	Размер, байт

	Byte
	0 … 255
	1

	ShortInt
	-128 … +127
	1

	SmallInt
	-32768 … +32767
	2

	Word
	0 … 65535
	2

	Integer
	-2147483648 … +2147483647
	4

	LongWord
	0 … 4294967295
	4

Логические типы.
	Название
	Размер, байт

	Boolean
	1

Логические переменные могут принимать одно из двух значений: True или False.

Символьные типы.
	Название
	Размер, байт

	Char
	1

Перечисляемые типы.
Перечисляемый тип – это тип, определенный путем явного перечисления всех возможных его значений.
В программе перечисляемые типы описываются после ключевого слова Type и находятся в списке внутри круглых скобок:

type
 test = (Level1, Level2, Level3);
 season = (winter, spring, summer, autumn);
 drink = (tea, coffee, cocoa, water)
Первое значение в списке имеет порядковый номер 0, второе 1 и т.д. Максимальный порядковый номер – 65536.

Тип – диапазон.
Тип – диапазон тоже является порядковым типом. Тип – диапазон – это подмножество значений любого порядкового типа, определяемое минимальным и максимальным значением. В подмножество входят все значения, находящиеся в этих границах.

type
 number = 1..20
 letter = 'a'..'z'

var
 number1: 500..700

Минимальное значение не должно быть больше максимального. Тип – диапазон поддерживает все операции базового типа.

Вещественные типы. В переменных вещественных типов содержатся числа, состоящие из целой и дробной частей.

	Название
	Диапазон значений
	Размер, байт

	Real
	2.9Е-39 – 1.7Е38
	6

	Single
	1.5Е-45 – 3.4Е38
	4

	Double
	5.0Е-324 – 1.7Е308
	8

Стандартные математические функции Object Pascal.

	Название
	Описание
	Пример
	Результат

	Trunc (x)
Int (x)
	Возвращает целое значение аргумента
	Trunc (700.40)
Int (700.40)
	700
700

	Frac (x)
	Выделяет дробную часть числа
	Frac (56.45)
	0.45

	Pi
	Задает число Пи
	
	

	Random
	Генерирует случайным образом число от 0 до 1
	
	

	Sqr (x)
	Возводит аргумент в квадрат
	Sqr (2)
	4

	Sqrt (x)
	Извлекает из аргумента квадратный корень
	Sqrt (9)
	3

Тип дата/время. Для одновременного хранения даты и времени определен тип дата/время. Этот тип определяется стандартным идентификатором TDateTime.

Функции для работы с датой и временем

	Название
	Описание

	Date: TDateTime
	Возвращает текущую дату

	DateToStr (D: TDateTime)
	Преобразует дату в строку символов

	DateTimeToStr (D: TDateTime)
	

	DecodeDate ()
	Выделяет в дате и возвращает год, месяц и день

	DecodeTime ()
	Выделяет во времени и возвращает часы, минуты, секунды и милисекунды

	Now: (D: TDateTime)
	Возвращает текущую дату и время

	Time: (D: TDateTime)
	Определяет текущее время

	TimeToStr (T: TDateTime)
	Преобразует время в строку

procedure TForm1.Button1Click(Sender: TObject);
var
 NowDate: TDateTime;
 Year, Month, Day, Hour, Min, Sec, MSec: Word;
begin
 NowDate:=Now;
 DecodeDate(NowDate, Year, Month, Day);
 DecodeDate(NowDate, Hour, Min, Sec, MSec);
end;

Структурированные типы данных
Структурированные типы данных определяют наборы однотипных или разнотипных элементов.
В Object Pascal определены следующие структурные типы:
· строки;
· массивы;
· множества;
· записи;
· файлы;
· классы.
Строковые типы.
· ShortString (длина до 256 символов);
· String.
Массивы.
· статистические;

var
 A: array[1..10] of integer		//одномерный массив
 B: array[0..9,0..4] of double		//многомерный массив

· динамические.

var
 A: array of char;
[bookmark: _Toc69119135][bookmark: _Toc82244695]13.1.3. Простые и структурированные операторы языка
Оператор в программе – это единое неделимое предложение, выполняющее какое-либо алгоритмическое действие.
Все операторы Object Pascal можно разделить на простые и структурированные.
Простыми считаются операторы, которые не содержат в себе других операторов.
К ним относятся:
· оператор присваивания;
· вызов процедуры;
· пустой оператор.
Структурированными являются операторы, которые состоят из других операторов.
К ним относятся:
· составной оператор;
· условный оператор if;
· условный оператор case;
· оператор цикла repeat;
· оператор цикла while;
· оператор цикла for;
· оператор над записями with.
Составной оператор – это последовательность операторов, заключенный в зарезервированные слова begin и end.
Условный оператор if предназначен для выбора к выполнению одного из двух действий, в зависимости от некоторого условия.

if условие then действие1 else действие2

Условный оператор case позволяет осуществлять выбор из любого количества вариантов.

Case ключ выбора of
 константа выбора : оператор;
 константа выбора : оператор;
else
 операторы
end;
Оператор цикла repeat организует выполнение цикла, состоящего из любого числа операторов, с неизвестным заранее числом повторений.

Repeat
 тело цикла
until
 условие;

Оператор цикла while. Цикл прекращает работу, если условие ложно.

While условие do оператор;

Оператор цикла for организует выполнение оператора заранее известное количество раз.

for параметр цикла:=начальное значение to конечное значение do
 оператор;
[bookmark: _Toc69119136][bookmark: _Toc82244696]13.1.4. Процедуры и функции
Процедуры и функции представляют собой блоки программного кода, имеющие точно такую же структуру, как и программа (не могут содержать раздел uses).
Процедуры
Пример программной реализации процедуры:

procedure proc_id (<список параметров>);
const				//Раздел описания локальных констант
 const1 = value1;
type				//Раздел описания локальных типов
 type_id1 = type_def1;
var
 var_id1: type_id1;
 var_id2, var_id3 : type_def2;
begin
…				//Текст процедуры
end;

Свойства процедуры:
· количество передаваемых параметров не ограничено;
· внутри процедуры формальные параметры представляют собой обычные переменные или константы;
· вызов процедуры:
 …
proc_id(A,B)
…
· параметры, указываемые при вызове процедуры, называются фактическими. Они представляют собой переменные или константы, описанные в программе.
Функции
Функции отличаются от процедур тем, что их идентификатор возвращает некоторое значение.

function MyFunc(A: integer) : single
begin
…
end
[bookmark: _Toc69119137][bookmark: _Toc82244697]13.1.5. Модули Object Pascal
При разработке программ в среде Delphi широко используются модули. Они позволяют объединить логически связанные типы данных, переменные, процедуры и функции в один программный блок.
Все идентификаторы, описанные в модуле, могут быть использованы в других программных блоках. Для использования идентификаторов, описанных в модуле в программе, достаточно объявить имя модуля в разделе uses.
Структура модуля Object Pascal имеет вид:

unit name_of_unit;	//Заголовок модуля
interface		//Блок интерфейса
uses
 unit1, unit2;
const
 const1 = value1;
 const2 = expression1;
type
 type1 = type_def1;
var
 var_id1 : type_def1;
 var_id2 : type_def2;
procedure proc_id1;
function func_id1 : type_def2;
implementation	//Блок реализации
uses
 unit3, unit4;
const
 const3 = value2;
type
 type2 = type_def3;
var
 var_id3, var_id4 : type_def4;
procedure proc_1;
begin
…
end;
function func1 : type_def5;
begin
…
end;

procedure proc_id1;
begin
…
end;
function func_id1 : type_def2;
begin
…
end;
end.

Заголовок модуля состоит из ключевого слова unit и имени модуля, которое обязательно должно совпадать с именем файла. Заголовок является обязательным.
Блок интерфейса содержит описание констант, типов, переменных, процедур и функций, которые будут доступны в других программах и модулях. В блоке интерфейса описываются только заголовки процедур и функций. Их текст приводится в разделе реализации.
Блок реализации может содержать объявление констант, типов, переменных, процедур и функций. Все эти объявления доступны только в данном модуле. Также в разделе размещается реализация всех процедур и функций, заголовки которых объявлены в блоке интерфейса.
[bookmark: _Toc69119138][bookmark: _Toc82244698]13.2. Объектно-ориентированное программирование
В основе объектно-ориентированного программирования лежит идея объединения в одной структуре данных и действий, которые выполняются над этими данными.
В объектно-ориентированном программировании базовыми единицами программ и данных являются классы.
[bookmark: _Toc69119139][bookmark: _Toc82244699]13.2.1. Основные понятия
Классы
Класс – это структура данных, которая может содержать в своем составе переменные, функции и процедуры.
Переменные в зависимости от назначения, называются полями, или свойствами. Процедуры и функции, входящие в состав класса, называются методами.
В Object Pascal определен структурный тип class.
Тип class обязательно должен быть описан как пользовательский тип в разделе type, например:

type
 TMyClass = Class
	 field1: type_definition1;
	 field2: type_definition2;
	 procedure method1;
	 function method2 : type_definition3;
 end;
Затем в разделе var может быть объявлена переменная объектного типа:

var
 Object1 : TMyClass;

При объявлении класса вначале описываются поля, а затем методы. Поля класса являются переменными, входящими в состав его структуры. Они предназначены для использования внутри класса.
В описании объектного типа присутствуют только заголовки методов. Сами методы описываются в разделе реализации того модуля, в котором объявляется новый объектный тип.
Объекты
Объектом или экземпляром класса называется переменная объектного типа.
Чтобы объект мог обмениваться данными с другими объектами, используются свойства. Свойства объекта определяют его состояние. Изменение состояния объекта производится только через вызов методов этого объекта.
[bookmark: _Toc69119140][bookmark: _Toc82244700]13.2.2. Основные концепции
Объектно-ориентированное программирование базируется на трех основных понятиях: инкапсуляции, наследовании и полиморфизме.
Инкапсуляция – комбинирование данных с процедурами и функциями, которые манипулируют этими данными.
Например, окружность описывается координатами центра и радиусом (данные). Кроме того, над окружностью можно проделывать различные действия (методы):
· вычислять ее длину и площадь ограниченного ею круга;
· проверять находится ли некоторая точка внутри данной окружности и т.п.
Класс, описывающий объект "окружность", может выглядеть следующим образом:

type
 TCircle = class
 x,y : double;
 r : double;
 function area : double;			 // Вычисление площади окружности
 function circumference : double;	 // Вычисление длины окружности
 function inside (x,y : double) : Boolean; //Проверка нахождения точки внутри окр-ти
end;

Для работы с классом необходимо создать его экземпляр, то есть описать в разделе var переменную данного объектного типа:

var
	Circle : TCircle;

Доступ к полям класса осуществляется следующим образом:

	…
Circle.x:=5;
Circle.y:=20;
Circle.r:=10;
…
	…
with Circle do begin
 x:=5;
 y:=20;
 r:=10;
end;
…

Аналогичным образом производится и вызов методов. Например, чтобы рассчитать площадь окружности, используется следующая строка:

	A:=Circle.area
	Методу area не нужно передавать никаких данных. Подразумевается, что метод применяется к экземпляру класса, внутри которого он определен. Таким образом, для расчета площади метод area использует данные, содержащиеся в поле r данного экземпляра класса.

Инкапсуляция позволяет обеспечить защиту данных от внешнего вмешательства или неправильного использования.
Наследование – это возможность использования уже определенных классов для построения иерархии классов, производных от них.
Новый класс может быть определен на основе уже имеющегося класса. При этом новый класс наследует как данные старого класса, так и методы их обработки.
Например, на основе класса, описывающего объект "окружность", можно создать класс, описывающий объект "кольцо". Причем часть свойств и методов у этих объектов будут общими: координаты центра, радиус внешней окружности, метод расчета длины внешней окружности. Поэтому при объявлении класса "кольцо" не нужно заново описывать эти свойства и методы:

TRing = class (TCircle)
 r2 : double;
 function area : double;			 // Вычисление площади кольца
 function circumference2 : double;	 // Вычисление длины внутренней окружности
 function inside (x,y : double) : Boolean;	 // Проверка нахождения точки внутри кольца
end;

В объявлении класса TRing указываются функции расчета площади кольца и определения попадания некоторой точки с заданными координатами внутрь кольца. Хотя имена этих методов совпадают с именами соответствующих методов для класса TCircle, их реализация должна быть иной, так как они применяются к разным геометрическим фигурам.
Если имена методов, объявляемых в дочернем классе, совпадают с именами полей или методов, то говорят, что они перекрываются.

В Object Pascal при объявлении объектного типа имя наследуемого класса указывается в круглых скобках после слова class. По умолчанию считается, что класс, определяемый пользователем, является наследником от класса TObject.
Например, объявления, представленные ниже идентичны.

TMyClass = class
TMyClass = class (TObject)

Полиморфизм - это свойство родственных классов решать схожие по смыслу проблемы разными способами. В рамках Object Pascal поведенческие свойства класса определяются набором входящих в него методов.
Изменяя алгоритм того или иного метода в потомках класса, программист может придавать этим потомкам отсутствующие у родителя специфические свойства.
Для изменения метода необходимо перекрыть его в потомке, то есть объявить в потомке одноименный метод и реализовать в нем нужные действия.
В результате в объекте – родителе и объекте – потомке будут действовать два одноименных метода, имеющие разную алгоритмическую основу и, следовательно, придающие объектам разные свойства. Это и называется полиморфизмом объектов.
[bookmark: _Toc69119141][bookmark: _Toc82244701]13.2.3. Поля, свойства и методы
Класс является сложной структурой данных, объединяющей переменные, функции и процедуры в одном типе данных.
Переменные, входящие в состав класса, называются полями. Процедуры и функции класса обычно называют методами. Свойства класса представляют собой поля, обращение к которым производится через специальные методы.
Поля
Поля класса представляют собой переменные, объявленные внутри класса. Объявление полей класса должно предшествовать объявлению методов и свойств.
Например, класс, содержащий одно поле и один метод, будет описываться следующим образом:

TSampleClass = class (TObject)	//Объявление нового класса
 FSample : integer;			//Поле класса
 procedure SampleMethod;		//Метод класса
end;

Свойства
Прямое обращение к полям, определяющим состояние объекта, противоречит принципам объектно-ориентированного программирования. Поэтому для обмена данными с другими объектами используются свойства, обращение к которым может выполняться не напрямую, а только через соответствующие методы.
В этом и заключается отличие свойств от полей, к которым можно обращаться непосредственно.
Для объявления свойств используется служебное слово property.
Так как свойство может обмениваться данными только через соответствующие методы, то при объявлении свойства обычно используют три элемента: свойство и два метода, обеспечивающие обращение к нему (чтение и запись).

TSampleClass = class (TObject)
 FSample : integer;
 procedure SetProp : TPropType;				 //Метод записи
 function GetProp (NewValue : TPropType);			 //Метод чтения
 property SampleProp : TPropType read GetProp write SetProp; //Объявление свойства
end;

При обращении к свойству класса нет необходимости в явном виде вызывать методы, обеспечивающие чтение значения свойства или изменение его значения.

…
SampleObject.SampleProp:= NewValue;
…
Value:= SampleObject.SampleProp;
…

Синтаксически обращение к свойству может выглядеть точно так же, как и обращение к полю.

Методы
Методы предназначены для манипулирования данными, входящими в состав класса. Фактически методы представляют собой обычные процедуры и функции, которым разрешен доступ ко всем полям класса.
Методы объявляются в описании класса после объявления полей.
[bookmark: _Toc69119142][bookmark: _Toc82244702]Тема 14. Среда разработки Delphi
[bookmark: _Toc69119143][bookmark: _Toc82244703]14.1. Быстрая разработка приложений
Быстрая разработка приложений (RAD – Rapid Application Development) основывается на визуализации процесса создания программного кода.
Средства быстрой разработки приложений основываются на компонентной архитектуре. При этом компоненты являются объектами, объединяющими данные и методы, а также свойства.
Компоненты Delphi поддерживают PME-модель (Property, Method, Events – свойства, методы, события), позволяющую изменять поведение компонентов без необходимости создания новых классов.
Процедура разработки интерфейса средствами RAD сводится к набору последовательных операций, включающих:
· размещение компонентов интерфейса в нужном месте;
· задание моментов времени их появления на экране;
· настройку связанных с ними атрибутов и событий.
Система визуального программирования Delphi позволяет в полной мере реализовать современные концепции программирования, включая:
· объектно-ориентированный подход;
· визуальные средства быстрой разработки приложений, основанные на компонентной архитектуре;
· возможность работы с базами данных.
[bookmark: _Toc69119144][bookmark: _Toc82244704]14.2. Главное окно Delphi
Интегрированная среда разработки Delphi включает в себя четыре основные части:
· главное окно;
· инспектор объектов;
· редактор форм;
· редактор кода.
Главное окно состоит из трех разделов:
· главное меню;
· панель инструментов;
· палитра компонентов.
[bookmark: _Toc69119145][bookmark: _Toc82244705]14.2.1. Палитра компонентов
Палитра компонентов используется для отображения компонентов, содержащихся в библиотеке компонентов Delphi.
В соответствии с выполняемыми ими функциями все расположенные в палитре компоненты разделены на группы, каждая из которых размещается на отдельной странице палитры.
Стандартная конфигурация палитры компонентов Delphi 3 содержит 13 страниц, каждая из которых предоставляет разнообразные компоненты и элементы управления:
	Standard
	стандартные элементы управления оконного интерфейса Windows;

	Additional
	специализированные элементы управления интерфейса Windows;

	Win32
	элементы интерфейса, содержащиеся системных библиотеках Windows;

	Data Access
	компоненты, обеспечивающие доступ к информации, хранящейся в базах данных, и использующие процессор баз данных BDE;

	Data Controls
	компоненты для отображения и редактирования информации, хранящейся в базах данных.

[bookmark: _Toc69119146][bookmark: _Toc82244706]14.2.2. Инспектор объектов
Инспектор объектов является одним из важнейших инструментов разработки приложения и используется для настройки опубликованных свойств компонента.
Окно инспектора объектов содержит выпадающий список и две вкладки:
· Properties;
· Events.
[bookmark: _Toc69119147][bookmark: _Toc82244707]14.3. Управление проектами
В среде Delphi работа ведется проектами – наборами файлов, из которых состоит приложение. Ими могут быть:
· файлы с исходным текстом модулей (расширение .PAS);
· формы, являющиеся графическим представлением приложения (расширение .DFM);
· файлы проектов (расширение .DPR).
Каждому файлу формы обязательно соответствует файл с исходным текстом модуля, но файл с исходным текстом модуля не обязательно должен иметь соответствующую ему форму.
В начале работы среда разработки фактически предоставляет в распоряжение готовую программу, состоящую из одного окна с заголовком Form1.
[bookmark: _Toc69119148][bookmark: _Toc82244708]14.4. Основные компоненты для построения простых приложений
Условно все компоненты Delphi можно разделить на две группы:
· визуальные (компоненты интерфейса);
· невизуальные (системные компоненты).
Визуальные компоненты видны как во время разработки, так и во время выполнения программы. Визуальные компоненты используются для создания интерфейса пользователя.
Невизуальные компоненты видны только во время разработки. Они предназначены для разработки логической структуры приложения.
Все компоненты Delphi являются потомками класса TComponent и имеют большое количество общих свойств и событий.
[bookmark: _Toc69119149][bookmark: _Toc82244709]14.4.1. Формы
Любое приложение, разработанное в среде Delphi, должно содержать, по крайней мере, одну форму.
Форма представляет собой окно приложения на этапе разработки и обеспечивает создание интерфейса пользователя, являясь контейнером для размещения элементов интерфейса.
Различаются два типа форм – модальные и немодальные.
Модальные формы не позволяют передавать фокус ввода в другие окна приложения до тех пор, пока модальное окно не закрыто. Пример модального окна – окно диалога.
Немодальные формы могут передавать управление другим окнам приложения, оставаясь открытыми.

Класс TForm
Все свойства класса TForm можно разделить на две группы – опубликованные свойства, т.е. те свойства, которые отображаются в окне инспектора объектов во время разработки приложения, и свойства, которые можно изменять только в процессе выполнения программы.
Основные опубликованные свойства класса TForm
	Свойство
	Тип
	Описание

	Caption
	TCaption
	Заголовок окна

	Color
	TColor
	Цвет фона окна

Кроме свойств класс TForm включает ряд методов, которые могут быть полезны при разработке приложения.
Основные методы класса TForm
	Метод
	Описание

	procedure Close
	Вызывает метод CloseQuery и, если он возвращает true, закрывает форму

	function CloseQuery : Boolean
	Используется для определения, может ли форма быть закрыта

	procedure Hide
	Скрывает форму, не уничтожая ее

	procedure Show
	Отображает форму в немодальном режиме

	function ShowModal : integer
	Отображает форму в модальном режиме

В классе TForm определен ряд методов-обработчиков событий, которые позволяют задавать реакцию экземпляра класса TForm на определенные действия.
	Метод-обработчик
	Описание

	OnActivate
	Вызывается при передаче форме фокуса ввода

	OnClick
	Вызывается при одиночном щелчке на форме

	OnClose
	Вызывается при закрытии формы

	OnShow
	Вызывается при отображении формы

[bookmark: _Toc69119150][bookmark: _Toc82244710]14.4.2. Стандартные элементы интерфейса
В библиотеке Delphi содержится ряд компонентов, которые предназначены для создания стандартных элементов интерфейса приложений Windows. Все эти компоненты доступны в палитре компонентов и могут размещаться на формах.
Основные классы визуальных компонентов
TForm		- форма
TMainMenu	- главное меню
TMenuItem	- элемент меню
TPopupMenu	- выпадающее меню
TLabel		- текст
TEdit		- ввод и редактирование строки
TMemo		- ввод и редактирование текста
TButton		- кнопка
TCheckBox	- переключатель
TRadioButton	- радио-кнопка
TListBox	- список (выбор из списка)
TComboBox	- комбинированный ввод (ввод строки или выбор из списка)
TScrollBar	- элемент для "прокручивания"
TGroupBox	- рамка для группирования элементов
TRadioGroup	- рамка для группирования радио-кнопок
TPanel		- панель
TImage		- растровое изображение

Основные свойства некоторых визуальных компонентов
Name		- имя компонента
Caption		- текст в заголовке или в элементе
Color		- цвет
Enabled		- доступность/ недоступность компонента
Font		- шрифт
Hint		- текст всплывающей подсказки
Visible		- видимость/ невидимость компонента
WordWrap	- переносить ли слова
Width		- длина по горизонтали
Height		- высота
[bookmark: _Toc69119151][bookmark: _Toc82244711]Тема 15. Доступ к БД в архитектуре фирмы Borland
Delphi обладает мощными средствами для разработки приложений, управляющих базами данных на основе собственного процессора баз данных BDE.
BDE взаимодействует с базами данных через драйверы. Для большинства наиболее распространенных баз данных разработаны стандартные драйверы.
Кроме того, обеспечивается возможность взаимодействия с базой данных через драйвер ODBC. Доступ к SQL-серверам обеспечивает система драйверов SQL Links, позволяющая разрабатывать приложения для серверов Oracle, Informix, Sybase, DB2 и InterBase.
[bookmark: _Toc82244712]15.1. Доступ к данным с использованием BDE
 (
Компьютер - клиент
)

 (
SQL Explorer
)
 (
Прикладные программы
)

 (
Настройка
)
 (
Borland Delphi Engine (BDE)
) (
Локальные БД
) (
BDE Administrator
)

 (
Драйвер фирмы
Microsoft
)
 (
Драйверы:
ODBC
) (
Драйверы:
SQL Links
)

 (
Компьютер - сервер
)

 (
SQL-сервер:
InterBase
) (
SQL-сервер:
DB2
) (
SQL-сервер:
Sybase
) (
SQL-сервер:
Informix
) (
SQL-сервер:
Oracle
)

Рис. 15.1. Схема доступа к БД

BDE разрешает реляционный (на языке SQL) и навигационный (понятия текущей, следующей и предыдущей строки и т.п.) способы доступа к БД, доступ к локальным и серверным БД.
Для каждой БД строится свой драйвер, который учитывает особенности СУБД и транслирует вызовы функций общего вида в вызовы частного вида.
Каждой БД в BDE обычно назначают условное имя (alias), через которое к ней идет обращение. Перенаправив условное имя на другую БД, можно легко переключить прикладную программу на другие данные и даже на данные другого формата. Назначение условных имен производится программами SQL Explorer или BDE Administrator.
[bookmark: _Toc82244713]15.2. Компоненты доступа к данным
Любое приложение, работающее с базами данных, должно обеспечивать ряд типовых функциональных возможностей, включающих:
· подключение к базе данных;
· считывание информации из таблиц этой базы данных;
· редактирование данных и навигация по набору данных.
Обращение к базам данных производится с помощью специальных компонентов, использующих функции BDE:
TTable – обеспечивает доступ к таблицам локальных баз данных и управление ими;
TQuery – использует для доступа к базе данных SQL-запросы, поэтому позволяет работать как с локальными, так и с удаленными базами данных.

Любые прикладная программа на Delphi, желающая использовать БД, должна иметь в своем составе, по меньшей мере, три слоя компонентов.
 (
Табличная "сетка"
TDBGrid
Навигация
TDBNavigator
Визуальные компо
ненты (пользова
тель
ский интер
фейс)
TDataSource
TDataSource
Промежуточный слой
TTable
TQuery
Доступ к БД
BDE
BDE
…
)

Рис. 15.2. Схема слоев компонентов в прикладной программе

Простая форма предназначена для просмотра и обновления единственной таблицы.

Для такой формы нужны следующие компоненты:

TQuery (или TTable)	- 1 шт.
TDataSource		- 1 шт.
TDBGrid		- 1 шт.
TDBNavigator		- 1 шт.

Основные свойства этих компонент
	Свойство
	Значение
	Комментарий

	TQuery

	RequestLive
	True
	Можно обновлять таблицу в сетке и передавать обновления в БД

	DatabaseName
	Student
	Условное имя БД (alias)

	Name
	Q1
	Имя этого компонента

	SQL
	Select * from P
	SQL - оператор

	TDataSource

	DataSet
	Q1
	Имя компонента TQuery, связанного с БД

	Name
	DS1
	Имя этого компонента

	TDBGrid

	DataSource
	DS1
	Имя компонента TDataSource

	TDBNavigator

	DataSource
	DS1
	Имя компонента TDataSource

	VisibleButtons
	nbFirst, …
	Список разрешенных кнопок для перемещения по таблице

Компоненты верхних слоев ссылаются на имена компонентов в нижних слоях.
Компонент TTable предназначен для доступа к единственной таблице файл-серверной СУБД, а TQuery - к любому количеству таблиц в клиент-серверной СУБД.

Обычно TTable используется в навигационном режиме для обработки единичных строк в таблице, а TQuery - для групповых операций с помощью SQL.
Оба компонента могут открыть набор данных методом Open или двоичным свойством Active и закрыть методом Close или тем же свойством Active.

Для просмотра и изменения НД обычно используются компоненты: TDBNavigator, TDBGrid и др., которые автоматически вызывают нужные методы компонентов TTable и TQuery.
Примеры программного доступа к НД:

Пример 1: Изменение в БД

Q1 : TQuery;
...
Q1.Open;	// Открыть НД - выполнить оператор SQL SELECT
...
Q1.Edit;		// Перевести в режим редактирования
Q1.FieldByName('gorod').AsString := 'Москва';
			// Столбец 'Gorod' интерпретируется как строка
			// Клетке присваивается значение 'Москва'
 Q1.Post; 	// Запомнить изменения в БД
 ...
 Q1.Close;	// Закрыть НД

Существуют другие типы-свойства:
AsBoolean : Boolean;
AsDataTime : TDataTime;
AsFloat : double;
AsInteger : integer;

Пример 2: Изменение БД с подтверждением

if Q1.Modified then 	// НД был изменен?
 if MessageDlg('Записать?', mtConfirmation[mbYes,mbNo],0) = mrYes then
 Q1.Post; 		// Запомнить изменения в БД

Свойство Modified принимает значение true, если хотя бы одна клетка НД была изменена пользователем.

Пример 3: Подсчет суммы значений в столбце

var
 sum : integer;
 begin
 sum := 0;
 Q1.Open;
 Q1.First; // Переход к 1-ой строке
 while not Q1.EOF do
 begin
 sum := sum + Q1.FieldByName('ves').AsInteger;
 Q1.Next;
 end;
 Q1.Close;
 ...
 end;

Некоторые особенности класса TQuery
1) Свойство SQL может содержать только один оператор SQL, хотя в нем могут упоминаться несколько таблиц.
2) Операторы SELECT из этого свойства выполняются методом Open, а операторы INSERT, DELETE и UPDATE методом ExecSQL.

Например:
а)
 with Query1 do
 begin
 Close; { закрыть НД }
 SQL.Clear; { удалить предыдущий оператор SQL }
 SQL.Add('SELECT * FROM P'); { задать новый оператор SQL }
 Open; { будет выполнять этот оператор SQL }
 end;

б)
 with Query1 do
 begin
 Close; { закрыть НД }
 SQL.Clear; { удалить предыдущий оператор SQL }
 SQL.Add('DELETE FROM S'); { задать новый оператор SQL }
 ExecSQL; { выполняет другой оператор SQL, помимо SELECT }
 end;

3) Свойство RequestLive задает желание изменять данные в БД путем навигации и правки НД, т.е. правки результата оператора SELECT.

Однако истина (true) в свойстве RequestLive не гарантирует, что правка будет разрешена. Для разрешения требуется, кроме того:
а) обращаться только к одной таблице;
б) не применять часть ORDER BY;
в) не применять функции вида SUM, AVG и пр.;
г) не применять вычисляемые столбцы.

4) При любых значениях свойств RequestLive и CanModify изменять БД можно операторами UPDATE, INSERT, DELETE и методом ExecSQL.

5) Изменяющийся оператор SQL можно построить двумя способами:

а)
var
 x : string[10];
 ...
with Query1 do
 begin
 Close; { закрыть НД }
 SQL.Clear; { удалить предыдущий оператор SQL }
 SQL.Add('SELECT * FROM P WHERE ves='+x); { задать новый оператор SQL }
 Open; { будет выполнять этот оператор SQL }
 end;

x - строковая переменная, содержащая заданный пользователем вес детали.

б) Пусть свойство SQL содержит оператор с двумя параметрами:
 SELECT * FROM P WHERE gorod=:Gor AND ves=:Massa
 тогда с помощью метода ParamByName можно дать параметру некоторое значение.

 Пример:

 var
 Town, x : string[30];
 ...
 with Query1 do
 begin
 Close; { закрыть НД }
 SQL.Clear;
 SQL.Add('SELECT * FROM P WHERE gorod=:Gor AND ves=:Massa');
 ParamByName('Gor').Value := Town;
 ParamByName('Massa').Value := x;
 Open; { будет выполнять оператор SQL }
 end;

6) Пусть свойство SQL содержит оператор, который возвращает одиночный результат. Например: SELECT SUM(kapital) FROM S;
Этот результат удобно извлекать с помощью метода FieldByName.

Пример:

 var
 Y : string[30];
 ...
 with Query1 do
 begin
 Close;
 Open;
 Y := FieldByName('SUM(kapital)').Value; { или .AsString }
 Label1.Caption := Y;
 end;

Компоненты для односвязной формы

Такая форма содержит одну связь и две таблицы: главную и подчиненную.
Таблицы связаны между собой через столбцы, имеющие одинаковые значения в строках. Связь между таблицами возможна только по тем столбцам, которые имеют индексы.
Для такой формы нужны следующие компоненты:
TTable			- для каждой таблицы по 1 шт.
TDataSource		- для каждой таблицы по 1 шт.
TDBGrid		- для каждой таблицы по 1 шт.
TDBNavigator		- 1 шт. (общая)

Основные свойства этих компонент
	Свойство
	Значение
	Комментарий

	T1:TTable (главная таблица)

	DatabaseName
	Student
	Условное имя БД (alias)

	Name
	T1
	Имя этого компонента

	TableName
	SP
	Имя таблицы (поставок)

	DS1:TDataSource (главная таблица)

	DataSet
	T1
	Имя компонента TTable, связанного с БД

	Name
	DS1
	Имя этого компонента

	Grid1:TDBGrid (главная таблица)

	DataSource
	DS1
	Имя компонента TDataSource

	T2:TTable

	DatabaseName
	Student
	Условное имя БД (alias)

	Name
	T2
	Имя этого компонента

	TableName
	S
	Имя таблицы (поставщиков)

	MasterSource
	DS1
	Имя компонента TDataSource, связанного с главной таблицей (источник данных главной таблицы)

	IndexFieldNames
	Nomer
	Имя столбца индекса в подчиненной таблице

	MasterFields
	Nomer_s
	Имя связующего столбца из главной таблицы

	DS2:TDataSource (подчиненная таблица)

	DataSet
	T2
	Имя компонента TTable, связанного с БД

	Name
	DS2
	Имя этого компонента

	Grid2:TDBGrid (подчиненная таблица)

	DataSource
	DS2
	Имя компонента TDataSource

	TDBNavigator

	DataSource
	DS1
	Имя главного компонента TDataSource

[bookmark: _Toc69119152]
[bookmark: _Toc82244714]Тема 16. Обработка исключительных ситуаций
Исключительная ситуация – это событие, прерывающее нормальное выполнение программы. Иначе говоря, исключительная ситуация является ошибкой, возникающей во время выполнения программы.
В Object Pascal определены две конструкции для работы с исключительными ситуациями.
Блок try … except
Блок try … except используется для реакции на конкретную исключительную ситуацию.

try
 statement1;
 statemant2;
 …
except
 on Exception1 do statemant3;
 on Exception2 do statemant4;
 …
 else statementN
end;

Если при выполнении операторов, расположенных в разделе try, не возникает исключительная ситуация, то обращения к разделу except вообще не происходит.
Если в разделе try возникает исключительная ситуация, то управление сразу передается разделу except.
Раздел except содержит набор операторов on … do, определяющих реакцию на исключительные ситуации. Между ключевыми словами on и do указывается имя класса исключительной ситуации. Оператор, расположенный после слова do, предназначен для ее обработки.
Исключительные ситуации, возникающие во время выполнения программы, описываются в языке Object Pascal с помощью специального объектного типа Exception. На базе этого типа определен ряд дочерних классов, соответствующих наиболее типичным исключительным ситуациям.

procedure TForm1.Button1Click(Sender: TObject);
var a,b,c: double;
begin
TRY
 a:=StrToInt(Edit1.Text);
 b:=StrToInt(Edit2.Text);
 c:=a/b;
 ShowMessage ('Результат ='+FloatToStr(c));
EXCEPT on EZeroDivide do ShowMessage ('Ошибка деления на 0');
 on EConvertError do ShowMessage ('Неверный формат числа');
END;
end;
Блок try … finally
Блок try … finally используется в тех случаях, когда необходимо выполнить некоторые действия даже в случае возникновения исключительной ситуации.

try
 statement1;
 statement2;
 …
finally
 statement3;
 statement4;
 …
 statementN;
end;

В данной конструкции сначала выполняются операторы, расположенные в разделе try. Если при их выполнении не возникло исключительной ситуации, то выполняются операторы, расположенные в разделе finally. Если же при выполнении операторов в разделе try возникает исключительная ситуация, то управление сразу передается первому оператору раздела finally.

[bookmark: _GoBack]

2

image4.png
Knvekr ' Cepsep
Il I
Owanor H——»{ Ynpasnerue

E PS. PL s AaHHbiMA :
| v 1| DS, FS| |
, Noruka ' :

o6paboTku E _____________

BL, DL

image5.png
Ynpaenexue

TexHuyeckue
TpebosaHuss ——»

Yenosnsg ———p
(PUHBHCUPOBAHUA

Bosmyuiaiotyme

MpoekT

Pecypcb!

BO3AENCTBUSA

- Pesynsrar

image6.png
i1 Form?2.

RIS o =0
NaMER_S[NoMER_PKoL -
DB P1 Ed] E]
st P2 m
st P3 0
st P4 m
st Ps 100
NOMER[FAMILIA KaPITAL_[GORDD
CERNE 20 floron B

image1.png
MHpOpMaLKNOHHBIE CUCTEMbE

OavHouHbIe

Ipynnosble

KopriopaTuBHble

image2.png
| Vincpopmaumonnbie cuctembr |

I

[I I 1
Cucrembl Unbopma- OdpuncHeie
O6paboTka NOAREPXKU UMOHHO- nHpopma-
TpaH3akuu NPUHATURA CrnpasoyHble LMOHHbIEe
pelleHni CUCTEMB! CUCTEMbI
OneparusHas OneparusHas CucteMsl HokymeHTanbHbie
06pa60n<a aHannTU4eCKas | 3neKTPOHHON CUCTEMBbI
TpaH3aKuu obpabotka AOKYMEHTALMM ABTOMaTUIaLMS
MakeTHan 3KcnepTHble leorpadurueckue [enonpovaBogacTea
obpaborka cMCTeMb WH(OPMALIMOHHbIE [——————
TpaH3akuui — cUCTEMbI YnpasneHue
e —— AOKYMEHTO060poTOM
Tunep- -
TEKCTOBbIE

CUCTEMBI

image3.png
WHGOpMaLUMOHHLIE CUCTEMDI

-

|

]

Ha ocHose
apXUTEKTYpb!
chain-cepaep

Ha ocHoBse
apxuTeKkTypbl
KNWeHT-cepeep

Ha ocHose
MHOroypoBsHeBou
APXUTEKTYPb

Ha ocHoBe
TeXHONorMu
Internet/Intranet

