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Дискретні динамічні системи

Завдання №1
Динаміка національного доходу Yt визначається рівнянням

 (1.1.0)

де с=0,25; А =1; а=2. Знайти залежність Yt, якщо Y0=1

Рішення
1. Варіант початкових даних Y0=1.
Рішення рівняння (1.1.0) проводимо в пакеті MAPLE7:
> rsolve({y(n)=1/4*y (n‑1)+1*(2^n), y(0)=1}, y(n));
>

> R3:=simplify(%);


Результат:


	n
	Y

	0
	1,00

	1
	2,25

	2
	4,56

	3
	9,14

	4
	18,29

	5
	36,57



Завдання №2
Динаміка національного доходу Yt визначається рівнянням Самуельсона-Хікса [6]
 (1.2.0)
де а=2; b =1,25; c=1. Знайти залежність Yt, якщо Y0=0, Y0=1
Рішення:
1. Динаміка об'єктів різної природи часто описується лінійними кінцево-різницевими рівняннями виду
xt = F (xt‑1, xt-2,…, xt-n), (1.2.1)
Характеристичний стан об'єкта xt у будь-який момент часу t зі станами в попередні моменти часу. Рішення рівняння (1.2.1) n‑го порядку визначено однозначно, якщо задані n так званих початкових умов. Звичайно як початкові умови розглядаються значення xt при t = 0, 1,…, n – 1.
Підставляючи початкові значення xn‑1,…, x1, x0 і t = n як аргументи функції в правій частині (1.2.1), знаходимо xn; використовуючи знайдене значення й підставляючи тепер xn, xn‑1,…, x2 x1 і t = n + 1 як аргументи функції, знаходимо xn+1, і т. д. Процес може бути продовжений доти, поки не будуть вичерпані всі досліджуємі значення t.
У моделі економічних циклів Самуельсона-Хікса використовуються кінцево-різницеві рівняння виду xt = a1 xt-1 + a2 xt-2 + f(t) – лінійні кінцево-різницеві рівняння другого порядку, що є приватним видом рівняння (1.2.1).
2. Варіант початкових даних Y0=0.
Рішення рівняння (1.2.0) проводимо в пакеті MAPLE7 [4]:
> rsolve({f(n)=(2*f (n‑1) – (1*1/4)*f (n‑2)+2), f(0)=0}, f(n));


· 
Samuelson_Hiks3:=simplify(%);



Як показує аналіз рішення для вирішення рівняння моделі Самуельсона-Хікса потрібно 2 послідовні точки початкових умов національного доходу (n‑1, n), тобто 0 та 1 значення для кінечно-різницевої моделі. Тільки тоді з’являється можливість розрахування послідовних значень для точки (n+1). Якщо є тільки одна початкова точка (n‑1), то отриманне рівняння моделі залежить не тільки від значення n, але і від значення Y(1).
3. Варіант початкових даних Y0=1.
Рішення рівняння (1.2.0) проводимо в пакеті MAPLE7:

> rsolve({f(n)=(2*f (n‑1) – (1*1/4)*f (n‑2)+2), f(0)=1}, f(n));


> Samuelson_Hiks3:=simplify(%);



Як показує аналіз рішення для вирішення рівняння моделі Самуельсона-Хікса потрібно 2 послідовні точки початкових умов національного доходу (n‑1, n), тобто 0 та 1 значення для кінечно-різницевої моделі. Тільки тоді з’являється можливість розрахування послідовних значень для точки (n+1). Якщо є тільки одна початкова точка (n‑1), то отримане рівняння моделі залежить не тільки від значення n, але і від значення Y(1).
4. Варіант початкових даних Y0=0, Y1=1.
Рішення рівняння (1.2.0) проводимо в пакеті MAPLE7:
> rsolve({f(n)=(2*f (n‑1) – (1*1/4)*f (n‑2)+2), f(0)=0, f(1)=1}, f(n));



· Samuelson_Hiks3:=simplify(%);



Завдання №3
Попит D та пропозиція S як функції ціни p задаються виразами

 (1.3.0)

Знайти стаціонарну ціну pD=S(при умові D=S – вирівнювання попиту та пропозиції) та з’ясувати чи вона є стійкою.

Рішення:
1. Аналіз стійкості рівноважної ціни pD=S, якщо попит D та пропозиція S завдані функціями:

 (1.3.1)

виконується для дискретного підходу за наступним алгоритмом [1].
Нехай ціна близька до рівноважної, при якій попит D дорівнює пропозиції S:

 (1.3.2)

Тоді рівняння (1.3.1) в кінцевих різницях можна представити як:

 (1.3.3)

З умови рівноваги попиту та пропозиції та умови (1.3.2), маємо наступне перетворення рівнянь (1.3.3):

 (1.3.4)

а оскільки

 (1.3.5)

то рівняння (1.3.4) трансформується до вигляду:
 (1.3.6)
Який перетворюється до наступної форми:

 (1.3.7)

Для приросту ціни ∆pi отримане рівняння (1.3.7) є характеристичним однорідним різницевим рівнянням з сталим коефіцієнтом. Умова стійкості його розв’язку має вигляд [1]:

 (1.3.8)

2. Для системи рівнянь (1.3.0) пошук рівноважної ціни PD=S виконується за схемою:

 (1.3.9)
Рішення рівняння (1.3.9) в пакеті MAPLE7 дає рішення:
> solve (– (sqrt(L)*sqrt(L))+sqrt(L)+2=0);

тобто p=4.
3. Знаходимо похідні  в точці рівноваги р=4:

 (1.3.10)

Оскільки умови стійкості для отриманих значень похідних в точці рівноваги не виконуються (1.3.11), то рівноважне рішення р=4 є нестійким

 (1.3.11)



Неперервні динамічні системи

Завдання №1
Найти розв’язок рівняння Харода-Домара



з початковою умовою Y (t=0) =Y0; s, A, і – const;
Позначення (згідно з моделлю Харода – Домара роста національного доходу держави у часі) [6]:
Y(t) – рівень національного доходу держави у часі;
 – схильність населення до заощаджень (0< s < 1,0), тобто частка національного доходу, яка відкладується в заощадження;
t – час;
i – коефіцієнт індукованих інвестицій при зміні національного доходу ∆Y(t), тобто частка приросту національного доходу, яка йде на інвестування економіки;
А – рівень незалежних сталих інвестицій

Рішення:
1. У загальному вигляді модель економічного зростання складається із системи п’яти рівнянь [6]:
1) формула виробничої функції, якою передається обсяг потенційного випуску, тобто випуску продукції за умов повної зайнятості;
2) основна макроекономічна тотожність Yt=Ct+It показує, що вимірник випуску (доходу) Y поділяється в теорії зростання на споживання С та інвестиції І; вимірники державних витрат G і чистого експорту NX окремо в таких моделях не вирізняються, а розподіляються на споживання та інвестиції держави й інших країн світу (тобто вводяться в компоненти С та І);
3) формула розрахунку динаміки обсягу капіталу з урахуванням інвестицій та амортизації основного капіталу (за умови нульового інвестиційного лагу) має вигляд:

Kt=Kt-1+It–Wt,

де Kt – запас капіталу наприкінці періоду t;
Іt – інвестиції за весь період t;
Wt, – амортизація капіталу за період t.
Наведена формула вказує на те, що кількість капіталу зростає на величину інвестицій та зменшується на величину амортизаційних відрахувань;
4) формула для розрахунку вибуття капіталу (амортизації) має вигляд:



де  – постійна (незмінна) норма амортизації, яка задається екзогенно отже, вважається, що вибуття капіталу є пропорційним до величини його запасу;
5) щодо інвестицій, то передбачається, що вони складають постійний процент від випуску It= s* Yt, де s – норма інвестицій (частка інвестицій у сукупному продукті (доході). Норма інвестицій s збігається з нормою заощадження, оскільки сукупні заощадження St дорівнюють сукупним інвестиціям Іt. Відповідно, Yt=Ct+St=Ct+It.
Таким чином, модель економічного зростання у загальному вигляді складається із системи п’яти наведених рівнянь, які містять сім змінних (Y, K, L, C, I, , s), три із яких задаються екзогенно:
· затрати праці L (зростають із постійним темпом n);
· норма амортизації основного капіталу ;
· норма заощадження s (задається безпосередньо або ж у вигляді певних умов, наприклад, максимізація споживання).
Мета дослідників – з’ясувати питання про те, як змінюються ендогенні змінні в моделі економічного зростання (Y, C та І) і який із чинників є визначальним фактором довгострокового економічного зростання.
Модель економічного зростання Харода–Домара
Це найпростіша модель економічного зростання, і була вона розроблена наприкінці 40‑х рр. Модель описує динаміку доходу (Y), який є сумою споживчих (С) та інвестиційних (І) витрат. Економіка вважається закритою, тому чистий експорт (NX) дорівнює нулю, а державні витрати (G) в моделі не вирізняються. Основним фактором зростання є нагромадження капіталу.
Основні передумови моделі:
– постійна продуктивність капіталу MPK = dY/dK;
– постійна норма заощадження s = I/Y;
– відсутній процес вибуття капіталу W = 0;
– інвестиційний лаг дорівнює нулеві, тобто інвестиції миттєво переходять у приріст капіталу. Формально це означає, що dK(t) = I(t);
– модель не враховує технічного прогресу;
· випуск не залежить від затрат праці, оскільки праця не є дефіцитним ресурсом;
· використовується виробнича функція Леонтьєва, яка передбачає неможливість взаємозаміни акторів виробництва – праці і капіталу.
Припускається, що швидкість доходу пропорційна інвестиціям: dY = MPK * I(t) = MPK * s * Y, а темп приросту доходу dY/Y * dt є постійним і дорівнює s * MPK. Він прямо пропорційний нормі заощаджень та граничній продуктивності капіталу. Інвестиції (І) та споживання (С) в моделі Харода-Домара зростають з таким же постійним темпом (s * MPK).
2. Рішення проводимо в пакеті MAPLE7, використовуючи функцію вирішення диференційного рівняння з початковими умовами Y (t=0)=Y0:
> L6:=diff (y(t), t)=(s/i*y(t) – A/i*t);



· ans1:= dsolve({L6, y(0)=Y0}, y(t));



Таким чином, розв’язком рівняння Харода-Домара у вигляді



з початковою умовою Y (t=0) =Y0; s, A, і – const;
є функція:


Завдання №2
Попит D та пропозиція S як функції змінної в часі ціни p=F(t) та її похідних задаються виразами

 (2.2.0)

Знайти стаціонарну ціну рівноваги попиту та пропозиції pD=S(t) – при умові D=S – вирівнювання попиту та пропозиції, як функцію часу, та з’ясувати чи вона є стійкою (оцінити рівень динаміки похідної ).
Рішення:
1. Якщо попит D та пропозиція S є функціями ціни p(t) та її першої та другої похідних , то їх рівняння в загальному вигляді можна представити наступним чином [1]:

 (2.2.1)

2. В умовах пошуку точок рівноваги попиту та пропозиції:

 (2.2.2)

рівняння (2.2.1), віднімаючи перше від другого, перетворюємо у наступне рівняння

 (2.2.3)

яке має наступні початкові умови:

 (2.2.4)

Загальний розв’язок рівнянь (2.2.1) – (2.2.4) має вигляд [1]:

 (2.2.5)

де С1 та С2 – довільні сталі;
 – корені характеристичного рівняння:

 (2.2.6)

Після вирішення рівняння (2.2.6), отримані  – корені характеристичного рівняння в рівнянні (2.2.5) характеризують стаціонарність рівноважної ціни p(t) наступним чином:
1) Якщо обидва корені  – є дійсними від’ємними або комплексними з від’ємною дійсною частиною, то рівняння (2.2.5) перетворюється до вигляду:

 (2.2.7)

та з наростанням t рівноважна ціна p(t) буде прямувати до ціни рівноваги попиту D та S – PD=S, оскільки 1 та другий член рівняння (2.2.7) будуть наближатися до нуля.
2) Якщо обидва корені  – є дійсними позитивними, або один з них має позитивний знак, або комплексними з позитивною дійсною частиною, то згідно рівнянь (2.2.5), (2.2.7) з наростанням t рівноважна ціна p(t) буде віддалятися від до ціни рівноваги попиту D та S – PD=S, оскільки або перший, або другий член рівняння (2.2.5) будуть наближатися до .
3. В точці рівноваги попиту та пропозиції D=S, рівняння (2.2.0) перетворюються в наступне диференційне рівняння другого порядку похідних:

 (2.2.8)

Для пошуку точок стаціонарної ціни рівноваги pD=S враховуємо умови дорівнювання нулю першої та другої похідної в цих точках:

 (2.2.9)

тоді рівняння (2.2.8) перетворюється до вигляду, який дозволяє розрахувати значення стаціонарної ціни рівноваги попиту та прозиції:

 (2.2.10)

Для рівняння (2.2.8) характеристичне рівняння має наступний вигляд:

 (2.2.11)

а корені його рішення, розраховані в пакеті MAPLE7, дорівнюють

> solve (L*L‑7*L‑30);


Оскільки корені характеристичного рівняння (2.2.11)  дійсні та мають різні знаки – рішення рівняння (2.2.10) є нестійким.

Завдання №3
Знайти стаціонарні точки динамічної системи

 (2.3.0)

та дослідити їх стійкість в лінійному наближенні.

Рішення:
1. Положення рівноваги вихідної динамічної системи (стаціонарні точки динамічної системи) визначається наступними умовами:

 (2.3.1)

звідкіля маємо систему рівнянь рівноваги

 (2.3.2)

Рішення системи рівнянь рівноваги (2.3.2) в пакеті MAPLE7 дає наступні 4 пари коренів – стаціонарних точок рівноваги динамічної системи (2.3.0):

> eqp1:=-x*x+2*x-x*y=0;
> eqp2:=-y*y+6*y‑2*x*y=0;
>
> solve({eqp1, eqp2}, {x, y});


 (2.3.3)

2. Для дослідження стійкості кожного з отриманих рішень, складаємо системи першого наближення в околицях точок рівноваги за допомогою розкладення в ряд Тейлора. Формула Тейлора для функції двох змінних x, y у першому наближенні (тільки рівень 1 похідних) для функції  в околицях точки x0, y0 має наступний вигляд [7]:
 (2.3.4)
Побудову систем рівнянь першого наближення системи (2.3.2) виконуємо за допомогою пакета MAPLE7 [4]:

> DxDt:=-x*x+2*x-x*y;

> mtaylor (DxDt, [x=0, y=0], 2);
> mtaylor (DxDt, [x=2, y=0], 2);
> mtaylor (DxDt, [x=4, y=-2], 2);
> mtaylor (DxDt, [x=0, y=6], 2);



 (2.3.5)
> DyDt:=-y*y+6*y‑2*x*y;
> mtaylor (DyDt, [x=0, y=0], 2);
> mtaylor (DyDt, [x=2, y=0], 2);
> mtaylor (DyDt, [x=4, y=-2], 2);
> mtaylor (DyDt, [x=0, y=6], 2);
>




 (2.3.6)

6. Використовуючи отримані результати (2.3.5), (2.3.6), дослідження стійкості рішення для 4‑х пар коренів проводимо в наступній послідовності [5]:
6.1. 1 пара коренів – x=0, y=0
Cистема характеристичних рівнянь 1‑го наближення ряду Тейлора відносно точки (x=0, y=0) має вигляд:



Для знаходження умов стійкості будуємо характеристичну матрицю:
	 
 
Звідки характеристичне рівняння 
Корені рішення цього рівняння  та  є дійсні та мають однакові знаки, що відповідає стійкості рішення рівноваги [5] в точці (x=0, y=0).
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