Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Особенности роста пузырька газа в жидкости

Название: Особенности роста пузырька газа в жидкости
Раздел: Рефераты по математике
Тип: реферат Добавлен 22:50:01 13 июня 2008 Похожие работы
Просмотров: 94 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Алексей Лохов

Руководитель: В.И.Шелест

10 класс школы-колледжа 130, г. Новосибирск

1998

Введение

Пузырьки газа в жидкости могут расти двумя способами: за счет диффузионного потока через ограничивающую его поверхность, за счет притока частиц к границе из-за конвективных потоков.

В общем случае это означает, что

,

где V- объем пузырька, nг - концентрация газа в пузырьке, nж - средняя концентрация газа в жидкости, j - средняя плотность конвективного потока газа, S - площадь поверхности пузырька и D - коэффициент диффузии газа в жидкости. Мы считаем, что nж>>nг . Если все процессы протекают равномерно, то

,

R - радиус растущего пузырька. Здесь градиент концентраций взят  R -1 из соображений размерности, т.к. R - единственный параметр в задаче с размерностью длины. Если преобладающим механизмом роста пузырька будет диффузионный (при), то:

,

откуда выражаем R :

Видно, что .

Если преобладающим механизмом роста пузырька будет потоковый (при), то:

(*),

откуда, на первый взгляд, R t. Мы попытаемся выяснить, действительно ли это так.

Расчет потока

Попробуем посчитать суммарный поток частиц J внутрь пузырька. Рассмотрим движение раствора вокруг пузырька (см.рис1.) Как видно из рисунка, жидкость тормозится за счет вязкости в гидродинамическом пограничном слое толщины l. Диффузия же газа происходит через диффузионный слой обеднения толщины  Этот слой характеризует то, что частицы растворенного газа успевают продиффундировать через него быстрее, чем поток пронесет их вдоль пузырька.

Выведем толщину l гидродинамического пограничного слоя. Пусть пузырек обтекается на длине  жидкостью плотности  , вязкости  , движущейся с постоянной скоростью v. Пусть площадь соприкосновения жидкости и пузыря S. Тогда запишем условие торможения жидкости за счет силы вязкости, для чего приравняем силу вязкости выражению, где Sl -масса соприкасающейся жидкости, а -ее ускорение на длине :

где    R характерная длина обтекаемого объекта, - число Рейнольдса. Тогда

.

Расчет толщины слоя обеднения  существенно зависит от соотношения между  и l. Известно, что среднеквадратичное смещение частицы определяется формулой

.

Время обтекания пузыря при  < l будет равно

(0),

где -скорость потока на расстоянии  от поверхности, а R-радиус пузыря. Отсюда находим выражение на  :

.

Подставляя значение l , получаем :

.

Запишем условие, что  < l:

(1)

Аналогичный расчет при  > l дает (подставляя в выражении (0) v = v' ):

При условии, что

.

Запишем поток J при > l :

.

Видно, что .

Запишем поток J при  < l:

(**).

Отсюда также следует, что .

Попробуем понять, какой же режим осуществляется на самом деле:  < l или  > l , для чего подставим характерные числовые параметры. Для раствора CO2 в воде при нормальных условиях были найдены следующие значения параметров (справочник "Физические величины", авторы А.П.Бабичев, Н.А.Бабушкина и др.): . Подставляя эти параметры в уравнение (1) получаем, что

.

Это означает, что для системы CO2 - вода реализуется случай  < l. Нами не были найдены газы, растворы которых в воде при нормальных условиях создавали бы условия для реализации того режима, когда  > l.

Итоги

В данной работе показано, что размер пузырька, растущего в растворе газа в жидкости меняется по нелинейным законам:

R t1/2 - диффузионное приближение,

R t2/3 - потоковое приближение.

Приложение

Покажем, что можно пренебречь изменением концентрации газа в жидкости при обтекании жидкостью пузырька. Для нахождения этого распределения решим следующую одномерную задачу: найдем распределение концентрации с газа в жидкости, движущейся со скоростью v между двумя большими плоскими проницаемыми для газа пластинами. Начальная концентрация - c0 (см. рис 2). Также учтем возможность диффузии частиц через стенки трубы: пусть сверху находится раствор концентрации c1 , снизу - концентрации c2 , причем примем для определенности

c2>c>c1 . Будем также считать, что диффузия происходит только через стенки, т.е. нет диффузии в самом потоке по оси y. Введем следующие обозначения: aтолщина стенки, через которую происходит диффузия, b - толщина потока, L - поперечная ширина потока, D - коэффициент диффузии и . Тогда запишем баланс частиц:

.

Упрощая, получаем:

.

Решением этого уравнения является функция

, (2)

Найдем полный поток J при  > l (см. рис 3) (случай  < l рассматривается аналогично):

(3)

Теперь запишем значение площади контакта S для пузырька:

,

Подставляя найденные значения параметров в уравнения (2) и (3), получаем значение потока

Вспомним, что c1 =c0 =nж , c2 = nг , nг <<nж , :

Если , то .

Если , то .

Видно, что результаты различаются всего в 2 раза. Подставив этот результат в уравнение (*), мы получим приближенное уравнение роста пузырька в конвективном потоке.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:09:21 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
12:47:18 25 ноября 2015

Работы, похожие на Реферат: Особенности роста пузырька газа в жидкости

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150294)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru