Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Единое электродинамическое поле и его распространение в виде плоских волн

Название: Единое электродинамическое поле и его распространение в виде плоских волн
Раздел: Рефераты по математике
Тип: статья Добавлен 04:59:01 03 апреля 2008 Похожие работы
Просмотров: 54 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Сидоренков В.В., МГТУ им. Н.Э. Баумана

Рассматриваются структура и характеристики распространения векторного четырехкомпонентного единого электродинамического поля, реализующего своим существованием функционально связанные между собой составляющие его поля: электромагнитное поле с векторными компонентами электрической и магнитной напряженности, поле электромагнитного векторного потенциала, состоящего из электрической и магнитной компонент, электрическое поле с компонентами электрической напряженности и электрического векторного потенциала, магнитное поле с компонентами магнитной напряженности и магнитного векторного потенциала.

В настоящее время установлено [1, 2], что в отношении полноты охвата явлений электромагнетизма, наряду с системой уравнений электродинамики Максвелла электромагнитного (ЭМ) поля с компонентами электрической и магнитной напряженности:

(a) , (b) , (1)

(c) , (d) ,

существуют и другие системы полевых уравнений, концептуально необходимые для анализа и адекватного физико-математического моделирования электродинамических процессов в материальных средах. Здесь и - электрическая и магнитная постоянные, , и - удельная электропроводность и относительные диэлектрическая и магнитная проницаемости среды, соответственно, - объемная плотность стороннего электрического заряда; - постоянная времени релаксации заряда в среде за счет электропроводности.

Уравнения в этих других системах рассматривают области пространства, где присутствуют либо только поле ЭМ векторного потенциала с электрической и магнитной компонентами:

(a) , (b) , (2)

(c) , (d) ;

либо электрическое поле с компонентами и :

(a) , (b) , (3) (c) , (d) ;

либо, наконец, магнитное поле с компонентами и :

(a) , (b) , (4)

(c) , (d) .

Основная и отличительная особенность уравнений систем (2) – (4) в сравнении с традиционными уравнениями Максвелла ЭМ поля (1) с физической точки зрения состоит в том, что именно они, используя представления о поле ЭМ векторного потенциала, способны последовательно описать многообразие электродинамических явлений нетепловой природы в материальных средах, определяемых электрической или магнитной поляризацией и передачей среде момента ЭМ импульса, в частности, реализуемых в процессе электрической проводимости [3] .

Принципиально и существенно то, что все эти системы электродинамических уравнений, в том числе, и система (1) для локально электронейтральных сред (), являются непосредственным следствием фундаментальных исходных соотношений функциональной первичной взаимосвязи ЭМ поля и поля ЭМ векторного потенциала [1, 2]:

(a) , (b) , (5)

(c) , (d) .

Очевидно, что данная система соотношений может служить основой для интерпретации физического смысла поля ЭМ векторного потенциала [4], выяснения его роли и места в явлениях электромагнетизма. Однако самое главное и интересное в них то, что они представляют собой систему дифференциальных уравнений, описывающих свойства необычного вихревого векторного поля, состоящего их четырех полевых векторных компонент , , и , которое назовем единое электродинамическое поле.

Объективность существования указанного единого поля однозначно иллюстрируется указанными системами уравнений (1) – (4) и получаемыми из них соотношениями баланса:

для потока ЭМ энергии из уравнений системы (1)

, (6)

для потока момента ЭМ импульса из уравнений системы (2)

(7)

для потока электрической энергии из уравнений системы (3)

, (8)

и для потока магнитной энергии из уравнений системы (4)

. (9)

Как видим, соотношения (5) действительно фундаментальны и их следует считать уравнениями единого электродинамического поля, базирующегося на исходной своей составляющей - поле ЭМ векторного потенциала, состоящего из двух взаимно ортогональных электрической и магнитной векторных полевых компонент. При этом поле ЭМ векторного потенциала своим существованием реализует функционально связанные с ним другие составляющие единого поля: ЭМ поле с векторными компонентами и , электрическое поле с компонентами и , магнитное поле с компонентами и .

Отмеченная здесь структура и взаимосвязь составляющих единого электродинамического поля сохраняется и в статической асимптотике. Логика построения систем полевых уравнений для стационарных составляющих единого поля и анализ физического содержания таких уравнений изложены, например, в работе [5].

Таким образом, имеем очевидное обобщение и серьезное развитие представлений классической электродинамики. В частности, показано, что, так же как и в случае ЭМ поля, в Природе нет электрического, магнитного или другой составляющей единого электродинамического поля с одной полевой компонентой. Структура обсуждаемых составляющих единого электродинамического поля из двух векторных взаимно ортогональных полевых компонент – это объективно необходимый способ их реального существования, принципиальная и единственная возможность распространения конкретной составляющей в виде потока соответствующей физической величины, в случае динамических полей - посредством поперечных волн.

Форма представленных систем уравнений (1) – (4) говорит о существовании волновых уравнений как для компонент ЭМ поля и , так и для компонент поля ЭМ векторного потенциала и . В этом можно убедиться, взяв, как обычно, ротор от одного из роторных уравнений любой системы, и после чего подставить в него другое роторное уравнение той же системы. Например, в качестве иллюстрации получим для системы (2) волновое уравнение относительно :

.

Здесь, согласно (2c), , - оператор Лапласа, а - фазовая скорость поля волны в отсутствие поглощения. Следовательно, указанные волновые уравнения описывают волны конкретной составляющей единого электродинамического поля в виде одной из парных комбинаций этих четырех волновых уравнений. В итоге возникает физически очевидный вопрос, что это за волны, и каковы характеристики распространения таких волн?

Ввиду того, что уравнения систем (1) и (2) математически структурно тождественны, а волновые решения уравнений (1) широко известны [6], то далее анализ характеристик распространения составляющих единого электродинамического поля, например, в виде плоских волн в однородных изотропных материальных средах проведем, прежде всего, для уравнений (3) электрического поля и уравнений (4) магнитного поля. Их необычные структуры между собой также математически тождественны, а волновые решения систем этих уравнений, как будет показано ниже, физически нетривиальны.

Итак, рассмотрим волновой пакет плоской линейно поляризованной электрической волны, распространяющейся вдоль оси 0X с компонентами и для системы (3) либо магнитной волны с компонентами и для системы (4), которые представим комплексными спектральными интегралами. Здесь, согласно соотношениям (5с) и (5d), учтена функциональная взаимосвязь обсуждаемых волн в виде единого процесса и взаимная коллинеарность векторов и (эти векторы антипараллельны), и компонент полей. Тогда, например, для уравнений электрического поля указанные интегралы имеют вид:

и ,

где и - комплексные амплитуды.

Подставляя их в уравнения (3a) и (3c), приходим к соотношениям и . Соответствующая подстановка интегралов и в уравнения (4а) и (4c) дает и . В итоге для обеих систем получаем общее для них выражение:

В конкретном случае среды идеального диэлектрика () с учетом формулы из следует для обеих систем обычное дисперсионное соотношение [6], описывающее однородные плоские волны электрического или магнитного полей. При этом связь комплексных амплитуд компонент указанных волновых полей имеет специфический вид:

в системе (3) и

в системе (4),

то есть при распространении в диэлектрической среде компоненты поля сдвинуты между собой по фазе на π/2. Специфика здесь в том, что характер поведения компонент поля такой волны в любой точке пространства аналогичен кинематическим параметрам движения (смещение и скорость) классической частицы в точке устойчивого равновесия поля потенциальных сил. Конечно, математически данный результат очевидно тривиален, поскольку компоненты ЭМ поля и поля ЭМ векторного потенциала связаны между собой посредством производной по времени (см. соотношения (5c) и (5d)). Однако с физической точки зрения этот результат весьма нетривиален и безусловно интересен.

Для проводящей среды () в асимптотике металлов () дисперсионное соотношение систем уравнений (3) и (4) имеет обычный в таком случае вид , где [6]. Тогда, например, для уравнений (3) связь комплексных амплитуд компонент и волновые решения запишутся в виде экспоненциально затухающих в пространстве плоских волн со сдвигом начальной фазы между компонентами поля на π/4:

, (10)

.

Для уравнений системы (4) их волновые решения математически тождественны (10) с заменой на и на при следующем выражении связи комплексных амплитуд:

.

Рассмотрим соответствующие рассуждения для аналогичного представленному выше пакету плоской волны теперь для ЭМ поля с компонентами и в системе (1), которые в итоге дают соотношения и . Подобным образом для волны поля ЭМ векторного потенциала с компонентами и в системе (2) имеем соответственно и . Таким образом, для этих двух систем электродинамических уравнений снова получаем стандартное выражение:

В этом случае для диэлектрической среды ()дисперсионное соотношение для волновых решений уравнений систем (1) и (2) будет , что описывает обычный режим волнового распространения компонент ЭМ поля [6] и компонент поля ЭМ векторного потенциала в виде однородных плоских волн. При этом связь комплексных амплитуд волновых решений уравнений систем (1) и (2) имеет следующий вид:

и ,

где сами волновые решения описывают указанные волны, компоненты поля которых синфазно распространяются в пространстве. При этом, согласно соотношениям (5c) и (5d), волны ЭМ поля отстают по фазе на π/2 от волн ЭМ векторного потенциала.

Для проводящей среды () в асимптотике металлов () рассуждения полностью аналогичны вышеприведенным. Здесь связи комплексных амплитуд для волновых решений уравнений систем (1) и (2) запишутся в виде:

и .

Как видим, распространение волн всех четырех составляющих единого электродинамического поля в асимптотике металлов подчиняется теоретически хорошо изученному закону для плоских волн ЭМ поля в металлах [6].

Подводя окончательный итог проведенным исследованиям, следует отметить, что именно уравнения системы (2) поля ЭМ векторного потенциала описывают волны, переносящие в пространстве поток момента ЭМ импульса, которые еще со времен Пойнтинга безуспешно пытаются описать с помощью уравнений ЭМ поля (1) (см., например, результаты анализа в статье [7]). При этом сами по себе волны ЭМ векторного потенциала принципиально не способны переносить энергию, поскольку в уравнениях (2) поля и отсутствуют. В этой связи укажем на пионерские работы [8], где обсуждаются неэнергетическое (информационное) взаимодействие поля векторного потенциала со средой при передаче в ней таких волн и способ их детектирования посредством эффекта, аналогичного эффекту Ааронова-Бома. Однако, как установлено в настоящей работе, распространение волн ЭМ векторного потенциала в принципе невозможно без присутствия их сопровождающих волн ЭМ поля (см. соотношения (5)) и соответственно наоборот.

Обобщая полученные результаты, приходим к выводу о том, что указанные выше составляющие единого поля, распространяющиеся в свободном пространстве посредством поперечных волн, существуют совместно и одновременно, в неразрывном функциональном единстве. Следовательно, с общей точки зрения совокупность полей, определяемых соотношением (5), действительно является четырехкомпонентным векторным электродинамическим полем, распространяющимся в пространстве в виде единого волнового процесса, а потому с концептуальной точки зрения разделение единого электродинамического поля на составляющие его поля в определенной мере условно. Однако с позиций общепринятых физических представлений и реальной практики аналитического описания явлений Природы разделение указанного единого поля на двухкомпонентные векторные составляющие в виде электрического, магнитного, электромагнитного и ЭМ векторного потенциала полей однозначно необходимо и, безусловно, удобно, поскольку диктуется объективным существованием разного рода конкретных электромагнитных явлений и процессов, реализуемых посредством рассматриваемых здесь полей.

Список литературы

1. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2006. № 1. С. 28-37.

2. Сидоренков В.В. // Материалы IX Международной конференции «Физика в системе современного образования». Санкт-Петербург: РГПУ, 2007. Т. 1. Секция “Профессиональное физическое образование”. С. 127-129.

3. Сидоренков В.В. // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2005. № 2. С. 35-46.

4. http://www.sciteclibrary.ru/rus/catalog/pages/8781.html.

5. http://www.sciteclibrary.ru/rus/catalog/pages/8834.html.

6. Матвеев А.Н. Электродинамика. М.: Высшая школа, 1980. 383 с.

7. Соколов И.В. // УФН. 1991. Т. 161. № 10. С. 175-190.

8. Чирков А.Г., Агеев А.Н. // ФТТ. 2002. Т. 44. Вып. 1. С. 3-5; 2007. Т. 49. Вып. 7. С. 1217-1221.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:55:52 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
15:33:14 25 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
12:35:23 25 ноября 2015

Работы, похожие на Статья: Единое электродинамическое поле и его распространение в виде плоских волн

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150048)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru