Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Экологические факторы среды

Название: Экологические факторы среды
Раздел: Биология и химия
Тип: статья Добавлен 18:37:16 02 апреля 2008 Похожие работы
Просмотров: 1107 Комментариев: 2 Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать

Чибисова Н.В., Долгань Е.К.

Окружающая организм среда - это природные тела и явления, с которыми она находится в прямых или косвенных отношениях. Условия среды, способные оказывать прямое или косвенное влияние на живые организмы, называются экологическими факторами. Существует несколько классификаций экологических факторов среды. Наиболее простой и ставшей классической является классификация, по которой экологические факторы среды делятся на две категории: абиотические факторы (факторы неживой природы) и биотические факторы (факторы живой природы).

К абиотическим факторам относятся климатические - свет, температура, влага, движение воздуха, давление; эдафогенные (почвенные) - механический состав, влагоемкость, воздухопроницаемость, плотность; орографические - рельеф, высота над уровнем моря, экспозиция склона; химические - газовый состав воздуха, солевой состав среды, концентрация, кислотность и состав почвенных растворов.

К биотическим факторам относятся фитогенные (растительные организмы), зоогенные (животные), микробиогенные (вирусы, простейшие, бактерии, риккетсии) и антропогенные (деятельность человека).

Оригинальную классификацию экологических факторов предложил А.С. Мончадский (1962), исходя из того, что приспособительные реакции организмов к тем или иным факторам среды определяются степенью постоянства этих факторов. Это:

- первичные периодические факторы (температура, свет), зависящие от периодичности вращения Земли и смены времен года;

- вторичные периодические факторы (влажность, осадки, динамика растительной пищи, содержание растворенных газов в воде, внутривидовые взаимодействия) как следствие первичных периодических;

- непериодические факторы (эдафические факторы, взаимодействие между разными видами, антропогенные воздействия, почвенно-грунтовые факторы), не имеющие правильной периодичности.

Воздействие химического компонента абиотического фактора на живые организмы выражается в существовании некоторых верхних и нижних границ амплитуды допустимых колебаний отдельных факторов (температура, соленость, рН, газовый состав и др.), то есть определенный режим существования. Чем шире пределы какого-либо фактора, тем выше устойчивость, или, как ее называют, толерантность, данного организма.

Лимитирующим фактором развития растений является элемент, концентрация которого лежит в минимуме. Это определяется законом, называемым законом минимума Ю.Либиха (1840). Либих, химик-органик, один из основоположников агрохимии, выдвинул теорию минерального питания растений. Урожай культур часто лимитируется элементами питания, присутствующими не в избытке, такими как СО2 и Н2О, а теми, которые требуются в ничтожных количествах. Например: бор - необходимый элемент питания растений, но его мало содержится в почве. Когда его запасы исчерпываются в результате возделывания одной культуры, то рост растений прекращается, если даже другие элементы находятся в изобилии. Закон Либиха строго применим только в условиях стационарного состояния. Необходимо учитывать и взаимодействие факторов. Так, высокая концентрация или доступность одного вещества или действие другого (не минимального) фактора может изменять скорость потребления элемента питания, содержащегося в минимальном количестве. Иногда организм способен заменять (частично) дефицитный элемент другим, более доступным и химически близким ему. Так, некоторым растениям нужно меньше цинка, если они растут на свету, а моллюски, обитающие в местах, где есть много стронция, заменяют им частично кальций при построении раковины.

Экологические факторы среды могут оказывать на живые организмы воздействия разного рода:

1) раздражители, вызывающие приспособительные изменения физиологических и биохимических функций (например, повышение температуры воздуха ведет к увеличению потоотделения у млекопитающих и к охлаждению тела);

2) ограничители, обусловливающие невозможность существования в данных условиях (например, недостаток влаги в засушливых районах препятствует проникновению туда многих организмов);

3) модификаторы, вызывающие анатомические и морфологические изменения организмов (например, запыленность окружающей среды в индустриальных районах некоторых стран привела к образованию черных бабочек березовых пядениц, сохранивших свою светлую окраску в сельских местностях);

4) сигналы, свидетельствующие об изменении других факторов среды.

В характере воздействия экологических факторов на организм выявлен ряд общих закономерностей.

Закон оптимума - положительное или отрицательное влияние фактора на организмы - зависит от силы его воздействия. Недостаточное или избыточное действие фактора одинаково отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия экологического фактора называется зоной оптимума. Одни виды выносят колебания в широких пределах, другие - в узких. Широкая пластичность к какому-либо фактору обозначается прибавлением частицы «эври», узкая - «стено» (эвритермные, стенотермные - по отношению к температуре, эвриотопные и стенотопные - по отношению к местам обитания).

Неоднозначность действия фактора на разные функции. Каждый фактор неоднозначно влияет на разные функции организма. Оптимум для одних процессов может быть неблагоприятным для других. Например, температура воздуха более 40°С у холоднокровных животных увеличивает интенсивность обменных процессов в организме, но тормозит двигательную активность, что приводит к тепловому оцепенению.

Взаимодействие факторов. Оптимальная зона и пределы выносливости организмов по отношению к какому-либо из факторов среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Так, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания выше при морозе с сильным ветром, нежели в безветренную погоду. Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы и полностью заменить один из них другим нельзя. Дефицит тепла в полярных областях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью в летнее время. Для каждого вида животных необходим свой набор экологических факторов.

Воздействие химического компонента абиотического фактора на живые организмы. Абиотические факторы создают условия обитания растительных и животных организмов и оказывают прямое или косвенное влияние на жизнедеятельность последних. К абиотическим факторам относят элементы неорганической природы: материнская порода почвы, химический состав и влажность последней, солнечный свет, теплота, вода и ее химический состав, воздух, его состав и влажность, барометрическое и водное давление, естественный радиационный фон и др. Химическими компонентами абиотических факторов являются питательные вещества, следы элементов, концентрация углекислого газа и кислорода, ядовитые вещества, кислотность (рН) среды.

Влияние рН на выживаемость организмов-гидробионтов. Большинство организмов не выносят колебаний величины рН. Обмен веществ у них функционирует лишь в среде со строго определенным режимом кислотности-щелочности. Концентрация водородных ионов во многом зависит от карбонатной системы, которая является важной для всей гидросферы и описывается сложной системой равновесий, устанавливающихся при растворении в природных пресных водах свободного СО2, по реакции:

СО2 + Н2О + Н2СО3+ Н+ + НС .

Именно эта реакция является причиной того, что рН пресных природных вод редко бывает теоретически нейтральной, то есть равной 7. Чаще всего рН чистой воды колеблется от 6,9 до 5,6. В природе приведенное выше равновесие в чистом виде не существует, так как на природные воды оказывает действие многочисленные факторы: температура, давление, содержание в атмосфере кислорода, аммиака, диоксида и триоксида серы, азота, состав пород по которым протекает река или расположено озеро. рН сравнительно легко измерить, поэтому его изучили во многих водных местообитаниях. Если рН не приближается к крайнему значению (от 6,5 до 8,5), то сообщества способны компенсировать изменения этого фактора и толерантность сообщества к диапазону рН, встречающемуся в природе, весьма значительна. Так как изменение рН пропорционально изменению количества СО2, рН может служить индикатором скорости общего метаболизма сообщества (фотосинтеза и дыхания). В воде с низким рН содержится мало биогенных элементов, в связи с чем продуктивность здесь мала. рН сказывается и на распределении водных организмов. Растения растут в воде с рН ниже 7,5 (Isoetes и Sparganium), от 7,7 до 8,8 (Potamogeton и Elodea canadensis), от 8,4 до 9,0 (Typha angustifolia). Развитие сфагновых мхов стимулируют кислые воды торфяников, в которых очень редки моллюски, ввиду отсутствия извести, зато часто встречаются личинки двукрылых из рода Chaoborus. Рыбы выносят рН в пределах от 5,0 до 9,0, но некоторые виды способны приспосабливаться к значению рН до 3,7. При рН > 10 вода гибельна для всех рыб. Максимальная продуктивность вод приходится на рН между 6,5 и 8,5. В таблице 1.1 указаны основные величины рН для пресноводных рыб Европы.

Аэробные и анаэробные организмы. Аэробными организмами называются такие организмы, которые способны жить и развиваться только при наличии в среде свободного кислорода, используемого ими в качестве окислителя. К аэробным организмам принадлежат все растения, большинство простейших и многоклеточных животных, почти все грибы, то есть подавляющее большинство известных видов живых существ. У животных жизнь в отсутствие кислорода (анаэробиоз) встречается как вторичное приспособление. Аэробные организмы осуществляют биологическое окисление главным образом посредством клеточного дыхания. В связи с образованием при окислении токсичных продуктов неполного восстановления кислорода, аэробные организмы обладают рядом ферментов (каталаза, супероксиддисмутаза), обеспечивающих их разложение и отсутствующих или слабо функционирующих у облигатных анаэробов, для которых кислород оказывается вследствие этого токсичным. Наиболее разнообразна дыхательная цепь у бактерий, обладающих не только цитохромоксидазой, но и другими терминальными оксидазами. Особое место среди аэробных организмов занимают организмы, способные к фотосинтезу, - цианобактерии, водоросли, сосудистые растения. Выделяемый этими организмами кислород обеспечивает развитие всех остальных аэробных организмов. Организмы, способные развиваться при низкой концентрации кислорода (_ 1 мг/л), называются микроаэрофилами.

Анаэробные организмы способны жить и развиваться при отсутствии в среде свободного кислорода. Термин «анаэробы» ввел Луи Пастер, открывший в 1861 году бактерии маслянокислого брожения. Распространены они главным образом среди прокариот. Метаболизм их обусловлен необходимостью использовать иные окислители, чем кислород. Многие анаэробные организмы, использующие органические вещества (все эукариоты, получающие энергию в результате гликолиза), осуществляют различные типы брожения, при которых образуются восстановленные соединения - спирты, жирные кислоты. Другие анаэробные организмы - денитрифицирующие (часть из них восстанавливает окисное железо), сульфатвоссстанавливающие, метанообразующие бактерии - используют неорганические окислители: нитрат, соединения серы, СО2. Анаэробные бактерии разделяются на группы маслянокислых и т.д. в соответствии с основным продуктом обмена. Особую группу анаэробов составляют фототрофные бактерии. По отношению к О2 анаэробные бактерии делятся на облигатных, которые неспособны использовать его в обмене, и факультативных (например, денитрифицирующие), которые могут переходить от анаэробиоза к росту в среде с О2. На единицу биомассы анаэробные организмы образуют много восстановленных соединений, основными продуцентами которых в биосфере они и являются. Последовательность образования восстановленных продуктов (N2, Fe2+, H2S, CH4), наблюдаемая при переходе к анаэробиозу, например в донных отложениях, определяется энергетическим выходом соответствующих реакций. Анаэробные организмы развиваются в условиях, когда О2 полностью используется аэробными организмами, например в сточных водах, илах.

Таблица 1.1

Значения рН для пресноводных рыб Европы (по Р.Дажо, 1975)

рН Характер воздействия на пресноводных рыб
3,0 - 3,5 Гибельно для рыб; выживают некоторые растения и беспозвоночные
3,5 - 4,0 Гибельно для лососевых рыб; плотва, окунь, щука могут выжить после акклиматизации
4,0 - 4,5 Гибельно для многих рыб, размножается только щука
4,5 - 5,0 Опасно для икры лососевых рыб
5,0 - 9,0 Область, пригодная для жизни
9,0 - 9,5 Опасно для окуня и лососевых рыб в случае длительного воздействия
9,5 - 10,0 Вредно для развития некоторых видов, гибельно для лососевых при большой продолжительности воздействия
10,0 - 10,5 Переносится плотвой в течение очень короткого времени
10,5 - 11,5 Смертельно для всех рыб

Влияние количества растворенного кислорода на видовой состав и численность гидробионтов. Степень насыщенности воды кислородом обратно пропорциональна ее температуре. Концентрация растворенного О2 в поверхностных водах изменяется от 0 до 14 мг/л и подвержена значительным сезонным и суточным колебаниям, которые в основном зависят от соотношения интенсивности процессов его продуцирования и потребления. В случае высокой интенсивности фотосинтеза вода может быть значительно пересыщена О2 (20 мг/л и выше). В водной среде кислород является ограничивающим фактором. О2 составляет в атмосфере 21% (по объему) и около 35% от всех газов, растворенных в воде. Растворимость его в морской воде составляет 80% от растворимости в пресной воде. Распределение кислорода в водоеме зависит от температуры, перемещения слоев воды, а также от характера и количества живущих в нем организмов. Выносливость водных животных к низкому содержанию кислорода у разных видов неодинакова. Среди рыб установлено четыре группы по их отношению к количеству растворенного кислорода:

1) 7 - 11 мг / л - форель, гольян, подкаменщик;

2) 5 - 7 мг / л - хариус, пескарь, голавль, налим;

3) 4 мг / л - плотва, ерш;

4) 0,5 мг / л - карп, линь.

Некоторые виды организмов приспособились к сезонным ритмам в потреблении О2, связанными с условиями жизни. Так, у рачка Gammarus Linnaeus выявили, что интенсивность дыхательных процессов возрастает вместе с температурой и изменяется в течение года. У животных, живущих в местах, бедных кислородом (прибрежный ил, донный ил), обнаружены дыхательные пигменты, служащие резервом кислорода. Эти виды способны выживать, переходя к замедленной жизни, к анаэробиозу или благодаря тому, что у них имеется d-гемоглобин, обладающий большим сродством к кислороду (дафнии, олигохеты, полихеты, некоторые пластинчатожаберные моллюски). Другие водные беспозвоночные поднимаются за воздухом на поверхность. Это имаго жуков-плавунцов и водолюбов, гладыши, водяные скорпионы и водяные клопы, прудовики и катушка (брюхоногие моллюски). Некоторые жуки окружают себя воздушным пузырьком, удерживаемым волоском, а насекомые могут использовать воздух из воздухоносных пазух водяных растений.

Зависимость живых организмов от концентрации минеральных солей в среде. В естественных водах концентрация минеральных солей весьма различна. В пресной воде максимальное содержание растворенных веществ равно 0,5 г/л. В морской воде среднее содержание растворенных солей 35 г/л. В солоноватых водах этот показатель очень изменчив. Соленость обычно выражается в промилле (‰) и является одной из основных характеристик водных масс, распределения морских организмов, элементов морских течений и т.д. Особую роль она играет в формировании биологической продуктивности морей и океанов, так как многие организмы очень восприимчивы к незначительным ее изменениям. Многие виды животных являются целиком морскими (многие виды рыб, беспозвоночных и млекопитающих).

В солоноватых водах обитают виды, способные переносить повышенную соленость. В эструариях, где соленость ниже 3 ‰, морская фауна беднее. В Балийском море, соленость которого составляет 4 ‰, встречаются балянусы, кольчецы, а также коловратки и гидроиды.

Водные организмы подразделяются на пресноводные и морские по степени солености воды, в которой они обитают. Сравнительно немногие растения и животные могут выдерживать большие колебания солености. Такие виды обычно обитают в эструариях рек или в соленых маршах и носят названия эвригалинных. К ним относятся многие обитатели литорали (соленость около 35 ‰), эструариев рек, солоноватоводных (5 - 35 ‰) и ультрасоленых (50 - 250 ‰), а также проходные рыбы, нерестящиеся в пресной воде (< 5 ‰). Наиболее удивительный пример - рачок Artemia salina, способный существовать при солености от 20 до 250 ‰ и даже переносить полное временное опреснение. Способность существовать в водах с различной соленостью обеспечивается механизмами осморегуляции, которую поддерживают относительно постоянные концентрации осмотически активных веществ в жидкостях внутренней среды.

По отношению к солености среды животные делятся на стеногалинных и эвригалинных. Стеногалинные животные - животные, не выдерживающие значительные изменения солености среды. Это подавляющее число обитателей морских и пресных водоемов. Эвригалинные животные способны жить при широком диапазоне колебаний солености. Например, улитка Hydrobia ulvae способна выживать при изменении концентрации NaCl от 50 до 1600 ммоль/мл. К ним относятся также медуза Aurelia aurita, съедобная мидия Mutilus edulis, краб Carcinus maenas, аппендикулярия Oikopleura dioica.

Устойчивость по отношению к изменению солености меняется с температурой. Например, гидроид Cordylophora caspia лучше переносит низкую соленость при невысокой температуре; десятиногие раки переходят в малосоленые воды, когда температура становится слишком высокой. Виды, обитающие в солоноватых водах, отличаются от морских форм размерами. Так, краб Carcinus maenas в Балтийском море имеет маленькие размеры, а в эструариях и лагунах - крупные. То же можно сказать и о съедобной мидии Mutilus edulis, имеющей в Балтийском море средний размер 4 см, в Белом море - 10 - 12 см, а в Японском - 14 - 16 см в соответствии с увеличением солености. Кроме того, от солености среды зависит и строение эвригалинных видов. Рачок артемия при солености 122 ‰имеет размер 10 мм, при 20 ‰ достигает 24 - 32 мм. Одновременно изменяется форма тела, придатков и окраска.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:55:24 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
12:34:58 25 ноября 2015

Работы, похожие на Статья: Экологические факторы среды

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151261)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru