Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Доклад: Предмет математики

Название: Предмет математики
Раздел: Рефераты по математике
Тип: доклад Добавлен 15:57:09 27 марта 2008 Похожие работы
Просмотров: 542 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

ЧТО ЖЕ ТАКОЕ МАТЕМАТИКА?

На вопрос "Что же такое математика?", как и на вопрос "Что

же такое философия" ответить однозначно и конкретно в прин-

ципе не возможно. Эти две области мировоззрения весьма об-

ширны и постоянно богатеют все новыми и новыми идеями, так

что даже для того чтобы сделать только поверхностный обзор

математики потребуется очень много времени, поэтому этим я

заниматься не буду, а рассмотрю со своей точки зрения, опи-

раясь на точку зрения Канта, только небольшой вопрос касаю-

щийся математики и может частично (далеко не полностью) по-

пытаюсь ответить, что же все таки такое математика.

Всякая математика по Канту имеет приложение только к об-

ласти явлений, а математика чистая т.е. теоретическая, -

только к априорно-созерцательным формам, будучи ими же по-

рождена. Кант отрицает, что математические построения отра-

жают свойства объективной реальности. Он прав, полагая, что

собственно геометрическое пространство реально вне нас не

существует, а абсолютное пространство Ньютона не реально. У

Канта пространство и время тоже "абсолютны", но уже в том

смысле, что абсолютно не зависят ни от вещей в себе, ни от

чувственной эмпирии. Однако очень трудной задачи выяснения

статуса математических абстракций и их отношения к действи-

тельности он разрешить не смог. Хотя исторически арифметика

и геометрия выросли из практического опыта древних, но

исходными пунктами при аксиоматическом построении математи-

ческих дисциплин оказываются не индуктивные обобщения и во

многих случаях даже не идеализирующие абстракции от этих

обобщений, а так называемые чистые идеальные конструкты.

Правда, в случае, например, геометрии Евклида, в единствен-

ности и абсолютной универсальности которой у Канта в общем

нет сомнений, ее аксиомы и постулаты в совокупности

представляют собой гносеологически еще более сложное образо-

вание, будучи совокупным результатом идеализируещего абстра-

гирования и идеального, т.е. чисто абстрактного, конструиро-

вания. В последнем случае отражение объективной реальности в

теории происходит "окольным" путем приблизительной интерпре-

тации. Только физическая интерпретация, проверяемая затем в

практике научных экспериментов, в состоянии решить, какая из

известных ныне геометрических систем истинна, т.е. соот-

ветствует свойствам реального физического пространства. За-

метим так же, что изображенная Кантом структура математики,

которая включает в себя не только чувственную интуицию и

синтезирующую конструкцию, но и аналитичность, как бы по

частям возродилась в интуиционистском, конструктивистском и

чисто аналитическом направлениях философии математики ХХ в.

Но каждое из этих направлений односторонне.

Важный вопрос заключается в том, можно ли считать, что от-

крытие Лобачевским неевклидовых геометрий в принципе подор-

вало учение об априорности пространства, поскольку оно пока-

зало, что тезис об априорной общеобязательности геометрии

Евклида как единственного будто бы возможного для всякого

субъекта способа восприятия чувственных феноменов не имеет

силы.

Лобачевский не отрицал эмпирической предпочтительности ге-

ометрии Евклида как геометрии обычного восприятия и привыч-

ного для нас макромира, и эту-то "привилегированность" и

закрепленную в филогенезе "очевидность" евклидовского виде-

ния пространства Кант как раз и пытался объяснить

посредством априоризма, так что неокантианец Э.Кассирер уви-

дел в открытии Лобачевского даже подтверждение кантианской

позиции. Конечно зависимость выбора между неевклидовыми гео-

метриями от физических и предметных интерпретаций наносит по

априоризму "критического" Канта сильный удар. Однако сам

факт создания подобных геометрий не столько побуждает к его

модификациям: ведь метод идеальных конструктов в современной

математике и освобождение абстрактных геометрических постро-

ений наших дней от остатков былой "воззрительности" в первом

приближении с априористской иллюзией совместимы. Кант был

знаком через Ламберта с допущениями математиков насчет воз-

можности неевклидовых постулатов и писал: "...возможно, что

некоторые существа способны созерцать те же предметы под

другой формой, чем люди". Уже это его допущение свидетельст-

вует о том, что, кроме однозначного априоризма и конвенциа-

нолизма, идеализм в математике способен апеллировать и к

иным гносеологическим построениям. Однако тезис общей тео-

рии, относительности, что выбор той или иной геометрии есть

физическая проблема, а также вывод из этой теории, что при

определенных условиях распределения масс во Вселенной ее

пространство имеет именно неевклидовую структуру, подрывают

априоризм в самой его основе.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:46:53 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:10:08 24 ноября 2015

Работы, похожие на Доклад: Предмет математики

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150696)
Комментарии (1839)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru