Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Тройные и кратные интегралы

Название: Тройные и кратные интегралы
Раздел: Рефераты по математике
Тип: реферат Добавлен 22:56:01 26 марта 2008 Похожие работы
Просмотров: 1960 Комментариев: 3 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Министерство общего и профессионального образования Р.Ф.

Иркутский государственный технический университет.

Кафедра высшей математики.

Реферат .

Применение тройных или кратных

интегралов.

Выполнила: студентка

группы ТЭ-97-1

Мелкоступова С.С.

Проверил преподаватель

кафедры высшей математики

Седых Е.И.

Иркутск 1998.

Содержание .

I. Масса неоднородного тела. Тройной интеграл.

II. Вычисление тройных интегралов.

1. Декартовы координаты.

А) Пример.

2. Цилиндрические координаты.

3. Сферические координаты.

А) Пример.

4. Применение тройных интегралов.

I.Масса неоднородного тела. Тройной интеграл.

Рассмотрим тело, занимающее пространственную область (рис. 1), и предположим, что плотность распределения массы в этом теле является непрерывной функцией координат точек тела:

Единица измерения плотности - кг/м3 .

Рис. 1.

Разобьем тело произволь­ным образом на n частей; объемы этих частей обозначим Выберем затем в каждой части по про­извольной точке Полагая, что в, каждой час­тичной области плотность по­стоянна и равна ее значению в точке , мы получим при­ближенное выражение для массы всего тела в виде суммы

(*)

Предел этой суммы при ус­ловии, что и каждое частичное тело стягивается в точку (т. е. что его диаметр ) стремится к нулю), и даст массу М тела

Сумма (*) называется n-й интегральной суммой, а ее предел - тройным интегралом от функции по пространственной области .

К вычислению тройного интеграла, помимо определения массы тела, приводят и другие задачи. Поэтому в дальнейшем мы будем рассматривать тройной интеграл

где - произвольная непрерывная в области функция.

Терминология для тройных интегралов совпадает с соответствую­щей терминологией для двойных интегралов. Точно так же формули­руется и теорема существования тройного интеграла .

Свойства двойных интегралов, полностью переносятся на тройные интегралы. Заметим только, что если подын­тегральная функция тождественно равна 1, то тройной интеграл выражает объем V области :

Потому свойства V и VI надо теперьсформулировать следующим образом.

V 1 . Если функция во всех точках области интегри­рования удовлетворяет неравенствам

то

где V - объем области .

VI 1 . Тройной интеграл равен произведению значения подын­тегральной функции в некоторой точке области интегрирования на объем области интегрирования, т. е.

II. Вычисление тройных интегралов.

Вычисление тройногоинтеграла может бытьосуществлено посредством ряда последовательных интегрировании. Мы ограничимся описанием соответствующих правил.

1. Декартовы координаты.

Пусть дан тройной интеграл от функции

причем область отнесена к системе декартовых координат Oxyz, Разобьем область интегрирования и плоскостями, параллельнымикоординатным плоскостям. Тогда частичными областями будут параллелепипеды с гранями, параллельными плоскостям Оху, Ох z , Оу z . Элемент объема .будет равен, произведению дифференциалов переменных интегрирования

В соответствии с этим будем писать

Установим теперь правило для вычисления такого интеграла.

Будем считать, что область интегрирования имеет вид, изобра­женный на рис. 1).

Опишем около и цилиндрическую поверхность с образующей, перпендикулярной к плоскости Оху. Она касается области вдоль некоторой линии L, которая делит поверхность, ограничивающую область, на две части: верхнюю и нижнюю. Уравнением нижней поверхности пусть будет , уравнением верхней .

Построенная цилиндрическая поверхность высекает из плоскости Оху плоскую область D, которая является ортогональной проек­цией пространственной области на плоскость Оху, при этом линия L проектируется в границу области .

Будем производить интегрирование сначала по Направлению оси О z . Для этого функция интегрируется по заключен­ному в отрезку прямой, параллельной оси О z и проходящей через некоторую точку Р(х, у) области D (на рис. 1 отрезок ). При данных х и у переменная интегрирования z будет изменяться от - аппликаты точки “входа” () прямой в область , до - аппликаты точки “выхода” () прямой из области .

Результат интегрирования представляет собой величину, зави­сящую от точки Р (х, у ) ; обозначим ее через F(х , у ):

При интегрировании х и у рассматриваются здесь как постоян­ные.

Мы получим значение искомого тройного интеграла, если возьмем интеграл от функции F(х, у ) при условии, что точка Р ( х, у) изменяется по области D, т. е. если возьмем двойной интеграл

Таким образом, тройной интеграл I может быть представлен в виде

Приводя, далее, двойной интеграл по области D к повторному и интегрируя сначала по y, а затем по x, получим

(*)

гдеи - ординаты точек“входа” в область D и“выхо­да” из нее прямой (в плоскости Оху), а a и b - абсциссы конечных точек интервала оси Ох, на который про­ектируется область D.

Мы видим, что вычис­ление тройного интеграла по области производит­ся, посредством трех пос­ледовательных интегриро­вании.

Формула (*) сохраняет­ся и для областей, имею­щих цилиндрическую фор­му, т. е. ограниченных цилиндрической поверхно­стью с образующими, параллельными оси О z , а сни­зу и сверху поверхностями, уравнения которых соответственно и (рис. 2).

Рис.2

Если областью интегрирования служит внутренностьпарал­лелепипеда с гранями, параллельными координатным плоскостям (рис. 3), то пределы интегрирования постоянны во всех трех .интегралах :

В этом случае интегрирование можно производить в любом порядке, пределы интегрирования будут при этом сохраняться.

Если же в общем случае менять порядок интегрирования ( т.е., скажем, интегрировать сначала по направлению оси Oy, а затем по области плоскости Oxz), то это приведёт к изменению порядка интегрирования в тройном интеграле и к изменению пределов интегрирования по каждой переменной.

Рис.3 Рис.4


А) Пример.

Вычислим тройной интеграл

где - область, ограниченная координатными плоскостями

и плоскостью (пирамида, изображённая на рис.4).

Интегрирование по z совершается от z=0 до Поэтому, обозначая проекцию области на плоскость Oxy через D, получим

Расставим теперь пределы интегрирования по области D - треугольнику, уравнения сторон которого

2. Цилиндрические координаты.

Отнесём область к системе цилиндрических координат , в которой положение точки M в пространстве определяется полярными координатами ее проекции Р на плос­кость Oxy и ее аппликатой (z). Выбирая взаимное распо­ложение осей координат, как указано на рис. 5, уста­новим связь, между декарто­выми и цилиндрическими ко­ординатами точки М, именно:

(*)

Рис.5

Разобьем область начастичные области тремя системами координатныхповерхностей: которыми будут соответственно круговые цилиндрические поверхности, осью кото­рых является ось О z , полуплоскости, проходящие через ось О z , и плоскости, параллельные плоскости Оху. Частичными областями служат прямые цилиндры MN (рис. 5). Так как объем цилиндра MN равен площади основания, умноженной на высоту, то для элемента объема получаем выражение

Преобразование тройного интеграла к цилиндрическим координатам производится совершенно аналогично преобра­зованию двойного интеграла к полярным. Для этого нужно в вы­ражении подынтегральной функции переменные x, y, z заменить по формулам (*) и взять элемент объёма равным

Получим

Если, в частности, то интеграл выражает объём V области

Вычисление тройного интеграла в цилиндрических координатах приводится к интегрированиям по r, по и по z на основании тех же принципов, что и в случае декартовых координат. В част­ности, если областью интегрирования служит внутренность ци­линдра то пределы трехкратного интеграла постоянны и не меняются при перемене порядка интегрирования:

3. Сферические координаты.

Отнесём теперь область интегрирования к системе сферических координат . В этой системе координат положение точки M в пространстве определяется её расстоянием r от начала координат (длина радиуса-вектора точки), углом между радиусом-вектором точки и осью Oz и углом между проекцией радиуса вектора точки на плоскость Oxy и осью Ox (рис. 6). При этом может изменятся то 0 до а - от 0 до .

Рис.6

Связь между сферическими и декартовыми координатами легко устанавливается. Из рис.6 имеем

Отсюда

(**)

Разобьем область на частичные области , тремя системами координатных поверхностей: которыми будут

соответственно сферы с центром в на­чале координат, полуплоскости, проходящие, через ось О z , и конусы с вершиной в начале координат и с осями, совпада­ющими с одной из полуосей О z . Частичными областями служат “шестигранники” (рис. 7). От­бросив бесконечно малые высших порядков, будем рассматривать шестигранник MN как прямоу­гольный параллелепипед с изме­рениями, равными: по направ­лению полярного радиуса, по направлению меридиана, по направлению параллели. Для элемента объема мы получимтогда выражение

Заменив в тройном интеграле по формулам (**) и взявэлемент объема равным полученному выражению, будемиметь

Особенно удобно применение сферических координат в случае, когда область интегрирование - шар с центром в начале коор­динат или шаровое кольцо.Например, в последнем случае, если радиус внутреннего шара , а внешнего , пределы интегриро­вания следует расставить так:

Если - шар, то нужно положить

A) Пример.

Вычислим объем шара радиуса R. В этом случае подынтегральную функцию надо взять равной 1, и мы получим

Применение тройных интегралов.

Для вычисления коорди­нат центра тяжести тела нужны статические моменты относительно координатных плоскостей Оху, Ох z , Оу z ; обозначим их соответ­ственно Повторяя рассуждения получим следующие формулы для координат центра тяжести неоднородного тела, плотность которого задается функцией занимающего область :

Если тело однородно, т. е. , то формулы упрощаются:

где V- объём тела.

Пример. Найдем центр тяжести однородного полушара :

Две координаты центра тяжести равны нулю, ибо полушар симметричен относительно оси О z (тело вращения с осью О z) .

Интеграл удобно вычислить, перейдя к сферическимкоординатам:

Так как объём полушара равен то

Перейдём к вычислению моментов инерции тела относительно координатных осей. Так как квадраты расстояний от точки P(x, y, z) до осей Ox, Oy, Oz соответственно равны то полагая для простоты получим следующие формулы :

Аналогично плоскому случаю интегралы

называются центробежными моментами инерции.

Для полярного момента инерции формула имеет вид

Если тело неоднородное, то в каждой формуле под зна­ком интеграла будет находиться дополнительный множитель - плотность тела в точке P.

Пример. Вычислим полярный момент инерции однородного шара радиуса R. В этом случае очень удобно перейти к сфери­ческим координатам. Будем иметь

где М— масса шара.

Так как для сферы моменты инерции относительно осей коор­динат, очевидно, равны между собой, то, учитывая, что получим

Моменты инерции тела относительно оси играют важную роль при вычислении кинетической энергии тела при его вращении около соответствующей оси. Пусть тело вращается околооси Оzс постоянной угловой скоростью . Найдем кинетическую энер­гию тела. Как известно, кинетическая энергия точки измеря­ется величиной , где т - масса точки, а - величина ее скорости. Кинетическая энергия системы точек определяется как сумма кинетических энергий отдельных точек, а кинетическая энергия тела - как сумма кинетических энергий всех частей, на которые оно разбито. Это обстоятельство позволяет применить для вычисления .кинетической энергии интеграл.

Возьмем какую-нибудь окрестность точки Р(х, у, z ) тела . Величина линейной скорости точки Р при вращении около оси О z равна и значит, кинетическая энергия части тела выразится так :

где - плотность тела в точке Р. Для кинетиче­ской энергии всего тела получаем

т.е.

Кинетическая энергия тела, вращающегося около некоторой оси с постоянной угловой скоростью, равна половине квадрата угловой скорости, умноженной на момент инерции тела относительно оси вращения.

Список использованной литературы.

1. А.Ф. Бермант ,И.Г. Араманович.

Краткий курс математического анализа для втузов: Учебное пособие для втузов: - М.: Наука, Главная редакция физико-математической литературы, 1971 г.,736с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:46:03 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:09:28 24 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:54:08 24 ноября 2015

Работы, похожие на Реферат: Тройные и кратные интегралы

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151152)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru