Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Антье и ее окружение

Название: Антье и ее окружение
Раздел: Рефераты по математике
Тип: реферат Добавлен 01:10:06 24 марта 2008 Похожие работы
Просмотров: 306 Комментариев: 7 Оценило: 5 человек Средний балл: 2.6 Оценка: неизвестно     Скачать

Андреев А.А., Савин А.Н.

Антье и ее свойства

Целой частью действительного числа x называется наибольшее целое число, не превосходящее x. Обозначается целая часть x символом "[x]". Далее целую часть x будем также называть "антье" (от франц. entire -целый). Например: [3,5]=3, [-3,5]=-4, [3]=3, [-5]=-5.

Наряду с целой частью числа существует понятие дробной части числа, которая обозначается "{x}" и определяется следующим образом: {x} = x-[x]. Так {3,5}=0.5, {-3,5}=-0.5, {5}=0, {-5}=0. Очевидно, что для любого действительного числа x выполняется двойное неравенство:0 Ј {x} < 1.

Антье обладает различными свойствами. Перечислим некоторые из них.

1. Если x і 0, то [x] і 0. Если x < 0, то [x] < 0.

2. Если p - целое число, то [x+p] = [x]+p.

Так как дробная часть числа x равна дробной части числа x+p, то из равенства {x+p} = {x} следует x+p-[x+p] = x-[x], откуда получаем [x+p] = [x]+p.

3. Для любых двух действительных чисел a и b справедливо [a+b] і [a]+[b].

Действительно, a = [a]+{a}, b = [b]+{b}. Следовательно, a+b = [a]+[b]+{a}+ {b}. Так как[a] и [b] - целые числа, то по свойству 2

[a+b] = [[a]+ [b]+{a}+{b}] = [a]+[b]+[{a}+ {b}] і [a]+ [b],

потому что {a}, {b} і 0 и по свойству 1 [{a}+ {b}] і 0.

Свойство 3 распространяется также на любое конечное число действительных чисел:

[a+b+...+w] і [a]+[b]+...+ [w].

4. Если [x] = [y], то |x-y| < 1.

Так как x = [x]+{x}, y = [y]+{y}, то |x-y| = |[x]+{x}-[y]-{y}| = |{x}-{y}| <1. Последнее неравенство следует из того, что дробная часть числа больше или равна нулю и меньше единицы. Следовательно, разность дробных частей двух чисел больше -1 и меньше 1, а модуль этой разности меньше 1. Отсюда |x-y| < 1.

5. Если n - натуральное число, то для любого действительного x выполняется

é

ê

ë

[x ]

n

ù

ú

û

=

é

ê

ë

x

n

ù

ú

û

.

Так как x = nq+r+a, 0 Ј r < n, a = {x}, то

é

ê

ë

[x ]

n

ù

ú

û

=

é

ê

ë

nq +r

n

ù

ú

û

=

é

ê

ë

q +

r

n

ù

ú

û

= q

é

ê

ë

x

n

ù

ú

û

=

é

ê

ë

nq +r +a

n

ù

ú

û

=

é

ê

ë

q +

r +a

n

ù

ú

û

= q .

Теперь, познакомившись с целой и дробной частью, можно рассмотреть следующий

Пример 1. Доказать, что для всех вещественных a и b выполняется неравенство

[a]+[a+b]+[b] Ј [2a]+[2b].

Решение.

Пусть [a+b] = [a]+[b]+e3 ; [2a] = 2[a]+e1 ; [2b] = 2[b]+e2 ; где ei - целое. Покажем, что e3 равно 0 или 1. Имеет место неравенство

-1 = a+b-1-a-b < [a+b]-[a]-[b] < a+b-a+1-b+1 = 2.

Отсюда получаем, что -1 < e3 < 2, откуда e3 = 0 или e3 = 1, то же верно для e1 , e2 . Рассмотрим разность

[2a]+[2b]-[a]-[b]-[a+b] = [a+a]+[b+b]-[a]-[a+b]-[b] =
= [a]+[a]+e1 +[b]+[b]+e2 -[a]-[a]-[b]-e3 -[b] = e1 +e2 -e3 .

Осталось показать, что e1 +e2 -e3 і 0, ei = 0 или 1. Это неравенство может быть нарушено только при e1 = e2 = 0 и e3 = 1. Покажем, что это невозможно. Если e1 = 0 то [2a] = 2[a], т.е. a = N+d, где N - целое, а 0 Ј d < 0,5, аналогично, b = K+l, где K - целое, а 0 Ј l < 0,5, но тогда [a+b] = N+K = [a]+[b], т.е.e3 = 0. Мы пришли к противоречию, следовательно [a]+[a+b]+[b] Ј [2a]+[2b], что и требовалось доказать.

Пример 2. Найдите

lim

n®Ґ

{(2+Ц2)n }.

Решение

Число Nn = (2+Ц2)n +(2-Ц2)n является целым при любом натуральном n. Поэтому

lim

n®Ґ

{(2+Ц2)n } =

lim

n®Ґ

{Nn -(2-Ц2)n } =

lim

n®Ґ

{-(2-Ц2)n } =

lim

n®Ґ

(1-{(2-Ц2)n }) = 1,

так как {-z} = 1-{z}, если z - не целое число, и |2-Ц2| < 1.

Пример 3. Найдите [x], если x=1+(1/2)2 +(1/3)2 +...+(1/1997)2 .

Решение

Для любого натурального числа n і 2 справедлива оценка

1

N2

<

1

n(n-1)

=

1

n-1

-

1

n

.

Применим эту оценку ко всем слагаемым числа x, начиная со второго:

x < 1+ æ
ç
è
1-

1

2

ö
÷
ø
+ æ
ç
è

1

2

-

1

3

ö
÷
ø
+...+ æ
ç
è

1

1996

-

1

1997

ö
÷
ø
= 2-

1

1997

< 2.

Так как 1 < x < 2, то [x] = 1.

Графики антье

Наверно вы уже где-нибудь встречали графики функции y=[x], так называемые "ступени", и y={x} - "забор"; оба графика приведены на рисунках ниже.

<> <>

Рассмотрим общий метод построения графиков функций y=[f(x)], y=f([x]), y={f(x)}, y=f({x}).

Построение графика функции y=[f(x)].

Итак, пусть график функции y=f(x) построен (рисунок ниже слева черным цветом). Построение графика функции y=[f(x)] выполняют в следующем порядке:

<> <>

1) проводят прямые y= n (n ОZ) и рассматривают одну из полос, образованных прямыми y=n и y=n+1;

2) точки пересечения прямых y=n, y=n+1 с графиком функции y=f(x) будут принадлежать графику функции y=[f(x)], поскольку их ординаты - целые числа; другие точки графика y=[f(x)] в рассматриваемой полосе получим как проекцию части графика y=f(x) на прямую y=n, поскольку любая точка этой части графика функции y=f(x) имеет такую ординату y1 , что n Ј y1 < n+1, т.е. [y1 ] = n;

3) в каждой другой полосе, где есть точки графика функции y=f(x), построение проводится аналогично.

Пример построения графика для конкретной функции приведен на рисунке справа (График функции y=[arcsin x] выделен красным цветом).

Построение графика фунции y=f([x]).

Пусть график функции y=f(x) построен (рисунок слева ниже черным цветом). Построение графика функции y=f([x]) выполняют в следующем порядке:

<> <>

1) проводят прямые x=n (n ОZ) и рассматривают одну из полос, образованную линиями x=n, x=n+1;

2) точки пересечения графика функции y=f(x) с прямыми y=n принадлежат графику функции y=f([x]), поскольку их абсциссы - целые числа; другие точки графика функции y=f([x]) в рассматриваемой полосе получим как проекцию части графика функции y=f(x), которая находится в этой полосе, на прямую y=f(n), поскольку любая точка этой части графика имеет такую абсциссу x1 , что n Ј x1 < n+1, т.е. [x1 ]=n;

3) в каждой другой полосе, где есть точки графика функции y=f(x), построение производится аналогично.

Пример построения графика для конкретной функции приведен на рисунке справа (График функции y=[ax]2 выделен красным цветом).

Построение графика фунции y={f(x)}.

Теперь рассмотрим метод построения графика функции y={f(x)}, а так как {f(x)}=f(x)-[f(x)], то вместо графика функции {f(x)} строят разность графиков функций y = f(x) и y = [f(x)]. График на левом рисунке выделен красным цветом.

<>

Практически это построение выполняют так: 1) строят график функции y=f(x) и проводят прямые y=n (n ОZ);

2) в точках пересечения этих прямых с графиком функции y=f(x) проводят прямые, параллельные оси ординат. Значения функции y={f(x)} попадают в образованные прямоугольники. Части графика функции y = f(x), которые попали в эти прямоугольники и располагаются в верхней полуплоскости, опускают вниз на расстояние n. Части графика функции, попавшие в нижнюю полуплоскость переносят вверх на расстояние |n|+1.

Пример построения графика для конкретной функции приведен на рисунке справа. (График функции y={ax } выделен красным цветом).

Построение графика фунции y=f({x}).

Проще всего строятся графики функции y=f({x}). Легко заметить, что такие функции периодичны с периодом T=1, и на отрезке [0; 1] f({x})=f(x). Отсюда следует способ построения графика функции y=f({x}):

1) строят график функции y=f(x) на [0; 1);

2) продолжают этот график, учитывая свойство периодичности функции y=f({x}) и y=1/x2 .

<>
Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений06:44:55 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
20:44:25 29 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:08:34 24 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
08:52:40 24 ноября 2015
мало!
19:48:34 04 октября 2010Оценка: 2 - Плохо

Смотреть все комментарии (7)
Работы, похожие на Реферат: Антье и ее окружение

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151131)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru