Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Вычисление интеграла

Название: Вычисление интеграла
Раздел: Рефераты по информатике, программированию
Тип: реферат Добавлен 04:14:05 29 февраля 2008 Похожие работы
Просмотров: 47 Комментариев: 5 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

КУРСОВАЯ РАБОТА

тема:

«Вычисление определённого интеграла

с помощью метода трапеций

на компьютере»

Выполнил:

студент ф-та

ЭОУС-1-12

Зыков И.

Принял:

Зоткин С. П.

Москва 2001

1. Введение:

Определенный интеграл от функции, имеющей неэлементарную первообразную, можно вычислить с помощью той или иной приближенной формулы. Для решения этой задачи на компьютере, можно воспользоваться формулами прямоугольников, трапеций или формулой Симпсона. В данной работе рассматривается формула трапеций.

Пусть I = ò f ( x ) dx , где f ( x ) – непрерывная функция, которую мы для наглядности будем предполагать положительной. Тогда I представит собой площадь криволинейной трапеции, ограниченной линиями x = a , x = b , y =0, y = f ( x ) . Выберем какое-нибудь натуральное число n и разложим отрезок[ a , b ] на n равных отрезков при помощи точек x 0 = a < x 1 <…< x n = b . Прямые x = x iразбивают интересующую нас криволинейную трапецию на n полосок. Примем каждую из этих полосок за обыкновенную прямолинейную трапецию (рис. 1, где n =4).

рис. 1

Тогда площадь первой слева полоски будет приближенно выражаться числом

((f(x 0 )+f(x 1 ))/2) *(x 1 -x 0 )=((y 0 +y 1 )/2) *((b-a)/n) ,

ибо основания трапеции, за которую мы принимаем полоску, равны f ( x 0 )= y 0 и f ( x 1 )= y 1 , а высота её

x 1 -x 0 =(b-a)/n .

Аналогично площади дальнейших полосок выразятся числами

(y 1 +y 2 ) *((b-a)/2 *n) , (y 2 +y 3 ) *((b-a)/2 *n) , , (y n-1 +y n) *((b-a)/2 *n) .

Значит, для нашего интеграла получается формула

I » ((b-a)/2 *n) *[ y 0 +2 *(y 1 +…+y n-1)+y n] .

Пологая для краткости y 0 + y n= Y кр (крайние), y 1 + y 2+…+ y n-1 = Y пром (промежуточные), получим

ò ydx » ((b-a)/2 * n) *(Y кр+2 *Y пром)

Эту формулу можно записать в другом виде

ò f(x)dx » (h/2) *[ f(a)+f(b)+2 å f(x i) ]

(где h – длина одного из n равных отрезков, x i = a + i * h ). Эта приближенная формула и называется формулой трапеций. Она оказывается тем более точной, чем больше взятое нами число n . Погрешность одного шага вычисляется по формуле: -( h ^3)/12 .

Задача. Пусть нужно проинтегрировать функцию f ( x ) = x ³ +2x²-3 x -8 на отрезке [0, 6]. На этом отрезке функция непрерывна.

Для выполнения поставленной задачи составлена нижеописанная программа, приближенно вычисляющая определенный интеграл с помощью метода трапеций. Программа состоит из трех функций main , f и trap . Функция main позволяет ввести интервалы интегрирования и задать точность вычисления интеграла, а также вызывает функцию trap для вычисления интеграла и распечатывает на экране результат. Функция f принимает аргумент x типа float и возвращает значение интегрируемой функции в этой точке. Trap – основная функция программы: она выполняет все вычисления, связанные с нахождением определенного интеграла. Trap принимает четыре параметра: пределы интегрирования типа float (a и b ), допустимую относительную ошибку типа float и указатель на интегрируемую функцию. Вычисления выполняются до тех пор, пока относительная ошибка, вычисляемая по формуле | S-Sn |, не будет меньше или равна требуемой. Функция реализована с экономией вычислений, т. е. учитывается, что S 0 постоянная и S 1= S 1+ f ( a +(2 *i +1) *h ) , поэтому эти значения вычисляются единожды. Метод трапеций обладает высокой скоростью вычисления, но меньшей точностью, чем метод Симпсона, поэтому его применение удобно там, где не требуется очень высокая точность.

Ниже предлагается блок-схема, листинг, спецификации, ручной счет и результат работы программы на примере поставленной выше задачи. Блок-схема позволяет отследить и понять особенности алгоритма программы, спецификации дают представление о назначении каждой переменной в основной функции trap , листинг - исходный код работающей программы с комментариями, а ручной счет предоставляет возможность проанализировать результаты выполнения программы.

2. Блок-схема программы:


ДА


НЕТ


i=1

S1=S1+f(a+(2*i+1)*h)

i=n/2



3. Листинг:

# include<stdio.h>

#include<math.h>

#include<conio.h>

main()

{

double a,b,er,eps,f(double),s,trap(double,double,double,double(*)(double));

clrscr();

printf("\n Задайте пределы интегрирования и точность: ");

scanf ("%lf%lf%lf",&a,&b,&eps);

s=trap(a,b,eps,f);

printf("\n Интеграл от a=%3.2lf до b=%3.2lf равен %lf",a,b,s);

getch();

}

double f(double x)

{

return x*x*x+2*(x*x)-3*x-8;

}

double trap(double a,double b,double eps,double(*f)(double))

{

double h,s,s0,s1,sn;

int i,n;

s=1; sn=101;

n=4;

s0=(f(a)+f(b))/2;

s1=f((a+b)/2);

while(fabs(s-sn)>eps){

sn=s;

h=(b-a)/n;

for(i=0; i<n/2; i++)

s1+=f(a+(2*i+1)*h);

s=h*(s0+s1);

n*=2;

}

return s;

}

4. Спецификации:

Имя переменной Тип Назначение
n int число разбиений отрезка [a, b]
i int счетчик циклов
a double Нижний предел интегрирования
b double Верхний предел интегрирования
h double шаг разбиения отрезка
eps double допустимая относительная ошибка
f double(*) указатель на интегрируемую фун - цию
x double аргумент ф-ии f
s double текущий результат интегрирования
s0 double половина суммы значений функции в точках a и b
s1 double сумма значений функции в промежуточных точках
sn double предыдущий результат интегрирования

5. Ручной счет:

Xi Yi
0 -8
0,75 -8,703125
1,5 -4,625
2,25 6,765625
3 28
3,75 61,609375
4,5 110,125
5,25 176,078125
6 262

6. Результат работы программы:

при eps = 0.1 при eps = 0.001

Введите a, b, eps: Введите a, b, eps:

0 0

6 6

.1 .001

Интеграл= 366.024170 Интеграл= 366.000094

т.е с помощью этой программы можно вычислить интеграл от функции с точностью до 1/10000.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений22:33:01 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
13:38:01 29 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
15:56:55 24 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
10:46:40 24 ноября 2015
гОВНО
15:33:28 06 мая 2007Оценка: 2 - Плохо

Работы, похожие на Реферат: Вычисление интеграла

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151453)
Комментарии (1844)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru