Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Вынужденные колебания

Название: Вынужденные колебания
Раздел: Рефераты по физике
Тип: реферат Добавлен 09:41:08 16 марта 2007 Похожие работы
Просмотров: 505 Комментариев: 4 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Реферат

На тему «Вынужденные колебания»

Студента I –го курса гр. 107

Шлыковича Сергея

Минск 2001

Вначале рассмотрим затухающие колебания.

Во всякой реальной колебательной системе всег­да имеется сила трения (для механической систе­мы), или электрическое сопротивление (для колебательного контура), действие которых приводит к уменьшению энергии системы. Если убыль этой энергии не восполняется, то колебания будут затухать.

Рассмотрим механические колебания. В большинстве случаев сила трения пропорциональна скорости.

. (1.1)

Где r — постоянная, которая называется коэффициентом трения. Знак минус обуслов­лен тем, что сила F и скорость v направлены в про­тивоположные стороны.

Уравнение второго закона Ньютона при наличии силы трения имеет вид

. (1.2)

Применим следующие обозначения

, (1.3)

Тогда

(1.4)

Где ω0 — собственная частота коле­бательной системы.

Будем искать решение уравнения в виде

(1.5)

Найдём первую и вторую производные

Подставим выражения в уравнение (1.5)

Сократим на

(1.6)

Решение уравнения (1.6) зависит от знака коэф­фициента, стоящего при и. Рассмотрим случай, когда этот коэффициент положителен (т. е. b<ω0 — тре­ние мало). Введя обозначение ,придем к уравнению

Решением этого уравнения будет функция

Подставляя это выражение в уравнение (1.5), имеем

(1.7)

Здесь A0 и α — постоянные, значения которых зави­сят от начальных условий, ω — величина, определяе­мая формулой

.

Скорость затухания колебаний определяется ве­личиной , которую называют коэффи­циентом затухания .

Для характеристики колебательной системы употребляется также величина

называемая добротностью колебательной си­стемы. Она пропорциональна числу колебаний Ne , совершаемых системой за то время t, за которое амплитуда колебаний уменьшается в e раз.

Вынужденные колебания.

Допустим, что механическая колебательная система подвергается действию внешней силы, изме­няющейся со временем по гармоническому закону:

(2.1)

В этом случае уравнение второго закона Ньютона имеет вид

Введя обозначения (1.3), преобразуем уравнение приобретёт вид:

(2.2)

Здесь b — коэффициент затухания, ω0 — собственная частота колебательной системы, ω — частота выну­ждающей силы.

Дифференциальное уравнение (2.2) описывает вынужденные колебания. Решение этого уравнения равно сумме общего решения соответствующего однородного уравнения и частного решения неоднородного уравнения. Общее решение однородного уравнения уже найдено (1.7), оно имеет вид

(2.3)

Где .

Попробуем найти частное решение (2.2) в виде (2.4)

где — неизвестный пока сдвиг фаз между силой и вызываемыми ею колебаниями.

(2.5)

(2.6)

Развернем и по формулам для синуса и косинуса разности и подставим в формулу (2.2) :

Сгруппируем члены уравнения:

(2.7)

Уравнение (2.7) будет тождественно при любых значениях t тогда, когда коэффициенты при cosωt и sinωtв обеих частях уравнения будут оди­наковыми.

(2.8)

(2.9)

Найдём значения A и при которых функция (2.4) удовлетворяет уравне­нию (2.2). Для этого возведём равенства (2.8) и (2.9) в квадрат и сложим их друг с другом

(2.10)

Из (2.9) следует, что

(2.11)

Подставим значения A и в (2.4) и получим частное решение неоднородного уравнения (2.2):

(2.12)

Общее решение имеет вид

Первое слагаемое играет за­метную роль только в начальной стадии процесса, при установлении колебаний. С течением времени из-за экспоненциального множителя роль слагаемого уменьшается, и по прошест­вии достаточного времени им можно пренебречь, со­хранив в решении только второе.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы (2.10) приводит к тому, что при некоторой частоте амплитуда достигает максимального значения. Колебательная система оказы­вается особенно отзывчивой на действие вынуждаю­щей силы при данной частоте. Это явление называет­ся резонансом , а соответствующая частота — резонансной частотой .

Для того чтобы определить резонансную частоту ωрез , нуж­но найти максимум функции (2.10), т.е. продифференцировать это выражение по ω и приравняв производную нулю:

Решения этого уравнения ω=0 и , но два из них исключаются, т.к. решение, равное нулю, соответст­вует максимуму знаменателя, а не имеет физического смысла (частота не может быть отрицательной).

(2.13). Следовательно (2.14)

Зависимость амплиту­ды вынужденных колеба­ний от частоты ко­лебаний показана графически на рисунке слева. Кривые на графике соответствуют различным значениям параметра b. Чем меньше b, тем выше и правее лежит максимум резонансной кривой. При очень большом затухании (таком, что b2 > ω0 ) выражение для ре­зонансной частоты становится мнимым. Это означает, что резонанс в этом случае не наблюдается — с увеличением частоты амплитуда монотонно убывает.

Изображенная на рисунке совокупность графиков функции (2.10) называется резонансными кривыми.

Согласно формуле (2.14) при малом затухании (т. е. при b<<ω0 ) амплитуда при резонансе

Если разделить это выражение на смещение x 0 из положе­ния равновесия под действием постоянной силы F0 , равное . В результате получим, что

где - логарифмический декремент затухания.

Следовательно, добротность Q показывает, во сколько раз амплитуда при резо­нансе превышает смещение системы из положения равновесия под действием постоянной силы, модуль которой равен амплитуде вынуждающей силы (это справедливо лишь при небольшом затухании).

Лит-ра:

И. В Савельев “Курс общей физики”.

P.S.

Данная лит-ра использовалась также при написании реферата на тему «Сложение колебаний».

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений21:38:33 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:07:46 24 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
15:22:06 24 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
10:46:39 24 ноября 2015

Работы, похожие на Реферат: Вынужденные колебания

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150758)
Комментарии (1839)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru