Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: On a decomposition of an element of a free metabelian group as a productof primitive elements

Название: On a decomposition of an element of a free metabelian group as a productof primitive elements
Раздел: Топики по английскому языку
Тип: статья Добавлен 19:36:08 24 марта 2007 Похожие работы
Просмотров: 18 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

E.G. Smirnova, Omsk State University, Mathematical Department

1. Introduction

Let G=Fn/V be a free in some variety group of rank n. An element On a decomposition of an element of a free metabelian group as a productof primitive elementsis called primitive if and only if g can be included in some basis g=g1,g2,...,gn of G. The aim of this note is to consider a presentation of elements of free groups in abelian and metabelian varieties as a product of primitive elements. A primitive length |g|pr of an element On a decomposition of an element of a free metabelian group as a productof primitive elementsis by definition a smallest number m such that g can be presented as a product of m primitive elements. A primitive length |G|pr of a group G is defined as On a decomposition of an element of a free metabelian group as a productof primitive elements, so one can say about finite or infinite primitive length of given relatively free group.

Note that |g|pr is invariant under action of Aut G. Thus this notion can be useful for solving of the automorphism problem for G.

This note was written under guideness of professor V. A. Roman'kov. It was supported by RFFI grant 95-01-00513.

2. Presentation of elements of a free abelian group of rank n as a product of primitive elements

Let An be a free abelian group of rank n with a basis a1,a2,...,an. Any element On a decomposition of an element of a free metabelian group as a productof primitive elementscan be uniquelly written in the form

On a decomposition of an element of a free metabelian group as a productof primitive elements.

Every such element is in one to one correspondence with a vector On a decomposition of an element of a free metabelian group as a productof primitive elements. Recall that a vector (k1,...,kn) is called unimodular, if g.c.m.(k1,...,kn)=1.

Лемма 1. An element On a decomposition of an element of a free metabelian group as a productof primitive elementsof a free abelian group An is primitive if and only if the vector (k1,...,kn) is unimodular.

Доказательство. Let On a decomposition of an element of a free metabelian group as a productof primitive elements, then On a decomposition of an element of a free metabelian group as a productof primitive elements. If c is primitive, then it can be included into a basis c=c1,c2,...,cn of the group An. The group On a decomposition of an element of a free metabelian group as a productof primitive elements(n factors) in such case, has a basis On a decomposition of an element of a free metabelian group as a productof primitive elements, where On a decomposition of an element of a free metabelian group as a productof primitive elementsmeans the image of ci. However, On a decomposition of an element of a free metabelian group as a productof primitive elements, that contradics to the well-known fact: An(d) is not allowed On a decomposition of an element of a free metabelian group as a productof primitive elementsgenerating elements. Conversely, it is well-known , that every element c=a1k1,...,ankn such that g.c.m.(k1,...,kn)=1 can be included into some basis of a group An.

Note that every non unimodular vector On a decomposition of an element of a free metabelian group as a productof primitive elementscan be presented as a sum of two unimodular vectors. One of such possibilities is given by formula (k1,...,kn)=(k1-1,1,k3,...,kn)+(1,k2-1,0,...,0).

Предложение 1. Every element On a decomposition of an element of a free metabelian group as a productof primitive elements, On a decomposition of an element of a free metabelian group as a productof primitive elements, can be presented as a product of not more then two primitive elements.

Доказательсво. Let c=a1k1...ankn for some basis a1,...an of An. If g.c.m.(k1,...,kn)=1, then c is primitive by Lemma 1. If On a decomposition of an element of a free metabelian group as a productof primitive elements, then we have the decomposition (k1,...,kn)=(s1,...,sn)+(t1,...,tn) of two unimodular vectors. Then c=(a1s1...ansn)(a1t1...antn) is a product of two primitive elements.

Corollary.It follows that |An|pr=2 for On a decomposition of an element of a free metabelian group as a productof primitive elements. ( Note that On a decomposition of an element of a free metabelian group as a productof primitive elements.

3. Decomposition of elements of the derived subgroup of a free metabelian group of rank 2 as a product of primitive ones

Let On a decomposition of an element of a free metabelian group as a productof primitive elementsbe a free metabelian group of rank 2. The derived subgroup M'2 is abelian normal subgroup in M2. The group On a decomposition of an element of a free metabelian group as a productof primitive elementsis a free abelian group of rank 2. The derived subgroup M'2 can be considered as a module over the ring of Laurent polynomials

On a decomposition of an element of a free metabelian group as a productof primitive elements.

The action in the module M'2 is determined as On a decomposition of an element of a free metabelian group as a productof primitive elements,where On a decomposition of an element of a free metabelian group as a productof primitive elementsis any preimage of element On a decomposition of an element of a free metabelian group as a productof primitive elementsin M2, and

On a decomposition of an element of a free metabelian group as a productof primitive elements.

Note that for On a decomposition of an element of a free metabelian group as a productof primitive elements, On a decomposition of an element of a free metabelian group as a productof primitive elementswe have

(u,g)=ugu-1g-1=u1-g.

Any automorphism On a decomposition of an element of a free metabelian group as a productof primitive elementsis uniquelly determined by a map

On a decomposition of an element of a free metabelian group as a productof primitive elements

On a decomposition of an element of a free metabelian group as a productof primitive elements.

Since M'2 is a characteristic subgroup, On a decomposition of an element of a free metabelian group as a productof primitive elementsinduces automorphism On a decomposition of an element of a free metabelian group as a productof primitive elementsof the group A2 such that

On a decomposition of an element of a free metabelian group as a productof primitive elements

On a decomposition of an element of a free metabelian group as a productof primitive elements

Consider an automorphism On a decomposition of an element of a free metabelian group as a productof primitive elementsof the group M2, identical modM'2, which is defined by a map

On a decomposition of an element of a free metabelian group as a productof primitive elements,

On a decomposition of an element of a free metabelian group as a productof primitive elements

By a Bachmuth's theorem from [1] On a decomposition of an element of a free metabelian group as a productof primitive elementsis inner, thus for some On a decomposition of an element of a free metabelian group as a productof primitive elementswe have

On a decomposition of an element of a free metabelian group as a productof primitive elements

On a decomposition of an element of a free metabelian group as a productof primitive elements

Consider a primitive element of the form ux, On a decomposition of an element of a free metabelian group as a productof primitive elements. By the definition there exists an automorphism On a decomposition of an element of a free metabelian group as a productof primitive elementssuch that

On a decomposition of an element of a free metabelian group as a productof primitive elements

On a decomposition of an element of a free metabelian group as a productof primitive elements (1)

On a decomposition of an element of a free metabelian group as a productof primitive elements

Using elementary transformations we can find a IA-automorphism with a first row of the form(1). Then by mentioned above Bachmuth's theorem

On a decomposition of an element of a free metabelian group as a productof primitive elements

On a decomposition of an element of a free metabelian group as a productof primitive elements

On a decomposition of an element of a free metabelian group as a productof primitive elements

In particular the elements of type u1-xx, u1-yy, On a decomposition of an element of a free metabelian group as a productof primitive elementsare primitive.

Предложение 2. Every element of the derived subgroup of a free metabelian group M2 can be presented as a product of not more then three primitive elements.

Доказательство. Every element On a decomposition of an element of a free metabelian group as a productof primitive elementscan be written as On a decomposition of an element of a free metabelian group as a productof primitive elements, and On a decomposition of an element of a free metabelian group as a productof primitive elementscan be presented as

On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elements.

Thus, On a decomposition of an element of a free metabelian group as a productof primitive elements

On a decomposition of an element of a free metabelian group as a productof primitive elements (2)

A commutator On a decomposition of an element of a free metabelian group as a productof primitive elements, by well-known commutator identities can be presented as

On a decomposition of an element of a free metabelian group as a productof primitive elements (3)

The last commutator in (3) can be added to first one in (2). We get On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elements[y-1 On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elements, that is a product of three primitive elements.

4. A decomposition of an element of a free metabelian group of rank 2 as a product of primitive elements

For further reasonings we need the following fact: any primitive element On a decomposition of an element of a free metabelian group as a productof primitive elementsof a group A2 is induced by a primitive element On a decomposition of an element of a free metabelian group as a productof primitive elements, On a decomposition of an element of a free metabelian group as a productof primitive elements. It can be explained in such way. One can go from the basis On a decomposition of an element of a free metabelian group as a productof primitive elementsto some other basis by using a sequence of elementary transformations, which are in accordance with elementary transformations of the basis <x,y> of the group M2.

The similar assertions are valid for any rank On a decomposition of an element of a free metabelian group as a productof primitive elements.

Предложение 3. Any element of group M2 can be presented as a product of not more then four primitive elements.

Доказательство. At first consider the elements in form On a decomposition of an element of a free metabelian group as a productof primitive elements. An element On a decomposition of an element of a free metabelian group as a productof primitive elementsis primitive in A2 by lemma 1, consequently there is a primitive element of type On a decomposition of an element of a free metabelian group as a productof primitive elements. Hence, On a decomposition of an element of a free metabelian group as a productof primitive elementsSince, an element On a decomposition of an element of a free metabelian group as a productof primitive elementsis primitive, it can be included into some basis On a decomposition of an element of a free metabelian group as a productof primitive elementsinducing the same basis On a decomposition of an element of a free metabelian group as a productof primitive elementsof A2. After rewriting in this new basis we have:

On a decomposition of an element of a free metabelian group as a productof primitive elements,

and so as before

On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elements

Obviously, two first elements above are primitive. Denote them as p1, p2. Finally, we have

On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elements, a product of three primitive elements.

If On a decomposition of an element of a free metabelian group as a productof primitive elements, then by proposition 1 we can find an expansion On a decomposition of an element of a free metabelian group as a productof primitive elementsas a product of two primitive elements, which correspond to primitive elements of M2: v1xk1yl1,v2xk2yl2,v1,v2 On a decomposition of an element of a free metabelian group as a productof primitive elements.

Further we have the expansion

On a decomposition of an element of a free metabelian group as a productof primitive elements

The element w(v1xk1yl1) can be presented as a product of not more then three primitive elements. We have a product of not more then four primitive elements in the general case.

5. A decomposition of elements of a free metabelian group of rank On a decomposition of an element of a free metabelian group as a productof primitive elementsas a product of primitive elements

Consider a free metabelian group Mn=<x1,...,xn> of rank On a decomposition of an element of a free metabelian group as a productof primitive elements.

Предложение 4. Any element On a decomposition of an element of a free metabelian group as a productof primitive elementscan be presented as a product of not more then four primitive elements.

Доказательсво. It is well-known [2], that M'n as a module is generated by all commutators On a decomposition of an element of a free metabelian group as a productof primitive elements. Therefore, for any On a decomposition of an element of a free metabelian group as a productof primitive elementsthere exists a presentation

On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elements

On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elements

Separate the commutators from (4) into three groups in the next way.

1) On a decomposition of an element of a free metabelian group as a productof primitive elements- the commutators not including the element x2 but including x1.

2)On a decomposition of an element of a free metabelian group as a productof primitive elements - the other commutators not including the x1.

3) And the third set consists of the commutator On a decomposition of an element of a free metabelian group as a productof primitive elements.

Consider an automorphism of Mn, defining by the following map:

On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elements,

On a decomposition of an element of a free metabelian group as a productof primitive elements.

The map On a decomposition of an element of a free metabelian group as a productof primitive elementsdetermines automorphism, since the Jacobian has a form

On a decomposition of an element of a free metabelian group as a productof primitive elements,

and hence, det Jk=1.

Since element On a decomposition of an element of a free metabelian group as a productof primitive elementscan be included into a basis of Mn, it is primitive. Thus any element On a decomposition of an element of a free metabelian group as a productof primitive elementscan be presented in form On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elements

On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsx3x2x1]

[x1-1x2-1x3-1]. =p1p2p3p4 a product of four primitive elements.

Note that the last primitive element p4=x1-1x2-1x3-1 can be arbitrary.

Предложение 5. Any element of a free metabelian group Mn can be presented as a product of not more then four primitive elements.

Доказательство. Case 1. Consider an element On a decomposition of an element of a free metabelian group as a productof primitive elements, so that g.c.m.(k1,...,kn)=1. An element On a decomposition of an element of a free metabelian group as a productof primitive elementsis primitive by lemma 1 and there exists a primitive element On a decomposition of an element of a free metabelian group as a productof primitive elements, On a decomposition of an element of a free metabelian group as a productof primitive elements

An element from derived subgroup can be presented as a product of not more then four primitive elements with a fixed one of them:

On a decomposition of an element of a free metabelian group as a productof primitive elements

Then On a decomposition of an element of a free metabelian group as a productof primitive elements.

Case 2. If On a decomposition of an element of a free metabelian group as a productof primitive elements, then by lemma 2 On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elements, where On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsare primitive in An. There exist primitive elements On a decomposition of an element of a free metabelian group as a productof primitive elementsOn a decomposition of an element of a free metabelian group as a productof primitive elementsSo On a decomposition of an element of a free metabelian group as a productof primitive elementsWe have just proved that the element wp1 can be presented as a product of not more then three primitive elements p1'p2'p3'. Finally we have c=p1'p2'p3'p2, a product of not more then four primitive elements.

Список литературы

Bachmuth S. Automorphisms of free metabelian groups // Trans.Amer.Math.Soc. 1965. V.118. P. 93-104.

Линдон Р., Шупп П. Комбинаторная теория групп. М.: Мир, 1980.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений21:58:50 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
14:55:29 24 ноября 2015

Работы, похожие на Статья: On a decomposition of an element of a free metabelian group as a productof primitive elements

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151261)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru