Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: О возможности индуцирования длиннопериодической структуры в антиферромагнетиках с магнитоэлектрическим эффектом

Название: О возможности индуцирования длиннопериодической структуры в антиферромагнетиках с магнитоэлектрическим эффектом
Раздел: Рефераты по математике
Тип: статья Добавлен 15:48:07 24 марта 2007 Похожие работы
Просмотров: 61 Комментариев: 4 Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать

Халфина А.А.

Известно, что в некоторых магнитоупорядоченных кристаллах образуется длиннопериодическая магнитная структура, называемая сверхструктурой. В простейшем случае сверхструктуры вектор плотности магнитного момента поворачивается вокруг избранной оси так, что конец вектора вычерчивает в пространстве геликоид. Теория геликоидальных структур (ГС) в антиферромагнетиках (АФМ) построена И.Е.Дзялошинским [1]. Показано, что их существование может быть связано с наличием в свободной энергии линейных по пространственным производным слагаемых. Так, например, сверхструктура одноосных АФМ обусловлена инвариантом лифшицевского вида l(ly×дlx/дz-lx×дly/дz). Здесь l - вектор антиферромагнетизма, ось z направлена вдоль оси анизотропии. Такой инвариант допускает кристаллографический класс Cn, и ГС является «врожденным» свойством этих АФМ. При наличии внешних магнитного H и электрического E полей появление таких слагаемых в свободной энергии с l=l0Ez или l=l0Hz возможно и в АФМ иной симметрии, т.е. ГС можно индуцировать полями H и E [2, 3].

Магнитная симметрия АФМ с магнитоэлектрическим эффектом допускает линейный неоднородный обменный инвариант Dmдl/дz [4], где m - вектор ферромагнетизма. Статические свойства таких АФМ и линейные возбуждения в них без учета вышеуказанного инварианта изучены достаточно подробно (см. напр. [5-7]). Нами показано сильное влияние этого инварианта на формирование доменной структуры центроантисимметричных АФМ в магнитном поле [8]. В настоящем сообщении обсуждается возможность индуцирования длиннопериодической структуры в АФМ с магнитоэлектрическим эффектом.

Рассмотрим двухподрешеточный ромбоэдрический центроантисимметричный АФМ со структурой . Исходим из плотности свободной энергии

F=Fm+Fmp+Fp,

включающей магнитную, магнитоэлектрическую энергии и энергию электрической поляризации. В приближении ml=0, m2+l2=1 каждое из слагаемых энергии имеет следующий вид [4, 7]:

, .

Здесь - константа однородного обмена, c - поперечная антиферромагнитная восприимчивость, , D~Ba0 - константы квадратичного и линейного неоднородного обмена, a0 - постоянная кристаллической решетки; a>0, a1<0 - константы магнитной анизотропии, – тензор магнитоэлектрического взаимодействия, , кz – компоненты тензора электрической поляризуемости, p – вектор электрической поляризации.

Свободную энергию в полях H<<HE=B/4M0 после минимизации по p и m можно представить в виде

,

(1)

Нp=[(g1ly+g3lz)Ex+g1lxEy, g1lxEx+(g3lz-g1ly)Ey, g2(Exlx+Eyly)-g0Ezlz].

Здесь для краткости принято

Пусть H || z, E || x, l=(sinqcosj, sinqj, cosq). Рассмотрим случай одномерной неоднородности вдоль оси z. Тогда плотность энергии (1) примет вид:

+(DcE/2M0[(2g1sinqcosqsinj+g3cos2q- -g2sin2q)cosj(dq/dz)+ +(g1sinqcos2j-g3cosqsinj)sinq(dj/dz)]+ +cHE[g1sinqcosqcos2j+(g2+g3)cos2qcosj+ +g2cosj]sinq,

(2)

где A*=A(1-m2), m2=D2/AB, a*=a-cH2.

Для простоты рассмотрим случай A*>0 и a1=-a*, соответствующий полю спин-флоп перехода. В отсутствие полей H и E решение уравнения Эйлера для угла j дает значение j=const. Сделав замену q=p/4-n/2, получим:

(3)

Уравнение Эйлера для функционала (3) имеет первый интеграл

A*(dv/dz)2+|a1|sin2v=|a1|/k2. (4)

Решение уравнения (4) имеет вид:

cos2q=sn(kz/d, k), (5)

где sn(u, k) - эллиптическая функция Якоби, - характерный размер магнитной неоднородности. Выражение (5) описывает геликоид вектора l , иначе - модуляцию чисто антиферромагнитного состояния q=0, p или q=p/2, 3p/2 (спины вдоль 3z или 2х-осей), поэтому называется еще модулированной магнитной структурой (ММС).

Из (2) с учетом (4), (5) получим прирост энергии, обусловленный ММС:

(6)

(7)

где K(k) и E(k) – полный эллиптический интеграл I и II рода соответственно; a=cg – магнитоэлектрическая восприимчивость. Из (6) и (7) видно, что плоскость геликоида фиксируется линейным неоднородным обменом. Положим для определенности k0>0. Тогда минимуму (6) соответствует значение j=0 .

Модуль эллиптического интеграла k, а вместе с ним и период структуры L=4Kkd можно определить из условия минимума энергии (6) по k. Рассмотрим два случая, соответствующие предельным значениям k®0 и k®1.

Используя разложения E(k) и K(k) при малых k, имеем:

Условие dF/dk=0 удовлетворяется значением . Прирост энергии равен

(8)

а период структуры

(9)

Из условия k<1 следует, что ММС в рассматриваемых АФМ может возникнуть, только если поле Е превышает пороговое значение Еп (7), величина которого вблизи спин-флоп фазового перехода определяется константой анизотропии четвертого порядка и магнитоэлектрической восприимчивостью. Это связано с тем, что инвариант Dmдl/дz имеет существенно нелифшицевский вид, а индуцирование ММС электрическим полем происходит через механизм магнитоэлектрического взаимодействия.

В случае k®1 km=1+2b/lnb, где b=p/2k0-1<<1. Прирост энергии, обусловленный наличием ММС, равен

(10)

Период структуры , величина L/d=2|lnb|>>1, и теперь (5) описывает периодическую структуру с узкими переходными слоями, в которых вектор антиферромагнетизма l меняет направление на p/2. В отличие от обычной доменной структуры прирост энергии ММС относительно однородного состояния (10) отрицателен, т.е. ММС энергетически выгодна.

Проведенные исследования показывают, что условием существования длиннопериодической магнитной структуры в антиферромагнетиках с магнитоэлектрическим эффектом является малость анизотропии (чему может способствовать близость к точкам фазового перехода) и большая величина магнитоэлектрической восприимчивости материала.

Список литературы

1. Дзялошинский И.Е. // ЖЭТФ. 1964. Т. 47. № 3 (9). С. 992–1003.

2. Витебский И.М. // ЖЭТФ. 1982. Т. 82. № 2. С. 57–361.

3. Барьяхтар В.Г., Яблонский Д.А. // ФТТ. 1982. Т. 24. № 8. С. 2522–2524.

4. Шавров В.Г. // ЖЭТФ. 1965. Т. 48. С. 1419–1426.

5. Tankeyev A.P., Shamsutdinov M.A., Kharisov A.T. // J.Phys.: Condens. Matter. 2000. V. 12. P. 1053–1064.

6. Харрасов М.Х., Абдулин А.У. // ДАН. 1994. Т. 336. С. 335–337. 7. Туров Е.А.// ЖЭТФ. 1993. Т. 104. № 5. С. 3886–3896.

Khalfina A.A., Shamsutdinov M.A.// Abstract Book. EASTMAG-2001. Ekaterinburg, 2001. P. 145.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений21:54:28 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:04:08 09 февраля 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
16:33:54 30 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
14:53:34 24 ноября 2015

Работы, похожие на Статья: О возможности индуцирования длиннопериодической структуры в антиферромагнетиках с магнитоэлектрическим эффектом

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151109)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru