Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Статья: Влияние особенностей электронной структуры на твердорастворное упрочнение сплавов на основе никеля

Название: Влияние особенностей электронной структуры на твердорастворное упрочнение сплавов на основе никеля
Раздел: Рефераты по математике
Тип: статья Добавлен 15:47:08 24 марта 2007 Похожие работы
Просмотров: 256 Комментариев: 5 Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать

, легированного переходными металлами

Муллакаев М.С., Габитов Э.В.

Рациональный выбор систем легирования металлических материалов до сих пор решался, в основном, экспериментальным путем. Следует указать на наличие двух основных факторов, влияющих на физико-химические характеристики и структурную стабильность сплавов при легировании.

Первый - это химическая природа легирующего элемента, под которой следует понимать особенности его электронного строения и размеры атома (иона). Второй фактор связан с реальной структурой материала, во многом определяемой технологией его получения и включающей в себя фазовый состав сплава, его зеренную и дислокационную структуру.

Представляется интересным исследование характера твердо растворного упрочнения в зависимости от особенностей электронной структуры легирующего элемента. Вопрос об упрочнении твердых растворов рассматривался в многочисленных работах, в частности, в [1, 2], где предполагалось, что основными факторами, определяющими величину эффекта, является размерный фактор и изменение упругих модулей материала. В работах [3, 4] было показано, что при легировании Ni и его интерметаллидов металлами наблюдается заметное твердорастворенное упрочнение, которое не удается описать в рамках существующих теорий. В [3] было сделано предположение, что наблюдаемое явление связано со значительным переносом заряда, происходящим в этих сплавах. Однако ни экспериментально, ни теоретически это предположение обосновано не было. Вопрос о влиянии легирования на механические свойства и термическую стабильность аморфных сплавов системы Fe-ПМ-в был исследован в работах [4, 5]. Увеличение твердости сплавов и температуры кристаллизации имеет место при использовании в качестве добавок переходных металлов, стоящих в начале периодов и обладающих широкой d-зоной, лежащей выше d-зоны железа. В работе [5] предполагалось, что свойства сплавов в первую очередь определяются химической связью между атомами металла и металлоида, однако экспериментальные подтверждения этой гипотезы отсутствуют. Кроме того, в [4, 5] не рассматривался вопрос, связанный с переносом заряда между атомами переходных металлов, который тоже имеет место [6]. Таким образом, физическая природа наблюдаемых эффектов до сих пор полностью не раскрыта.

В связи с тем, что вопросы, связанные с твердорастворным упрочнением металлов, не имеют однозначного толкования, была поставлена задача оценить влияние химической природы легирующего элемента на механические свойства и структурную стабильность сплавов на основе алюминия.

Для сведения к минимуму роли реальной структуры материала были выбраны однофазные сплавы; кроме того, при работе со сплавами принимались меры, обеспечивающие реализацию одинаковой реальной структуры.

При приготовлении сплавов использовались элементы, чистота которых была не ниже, чем 99,99 %.

Слитки сплавов никеля, легированного 1–8 ат % Ti, V, Cr, Fe, Co, Cu, Zn, Zr, Nb, Mo, выплавлялись в вакуумной индукционной печи (для сплавов с Zr концентрация легирующих элементов не превышала 1 ат %). Они проковывались на пруток диаметром 15 мм в температурном интервале 1200-1350 К со степенью деформации ~ 95 %. Прутки подвергались рекристаллизационному отжигу при температурах 800-110000 С в течение 1-5 часов. Режимы термообработки для каждого сплава подбирались таким образом, чтобы получить в образцах размеры зерна ~ 100-150 мкм.

Химический и фазовый состав образцов и их однородность контролировались методом микрорентгеноспектрального и рентгеноструктурного анализов, оптической и просвечивающей электронной микроскопии. Фазовый состав сплавов, параметры решетки определялись на основании данных рентгеноструктурного анализа, проведенного на дифрактометре ДРОН-3М. Химический состав сплавов и характер распределения элементов исследовался на рентгеновском микроанализаторе “Cambex-microbeam”. Металлографический анализ проводился с использованием микроскопа “NEOFOT”. Просвечивающая электронная микроскопия проводилась на микроскопе JEOL-2000.

Особенности электронной структуры изучались методом оже-спектроскопии. Спектры снимались на установке LAS-600. Непосредственно перед записью спектров поверхность образцов очищали травлением ионами аргона. При интерпретации полученных результатов был использован подход, развитый в работах [7, 8] и позволяющий исследовать переносы заряда на атомах переходных металлов. Сущность подхода легко понять, рассмотрев схему оже-переходов, характерных для 3d-металлов, представленную на рис. 1. Спектры переходных металлов характеризуются тремя основными оже-переходами L2,3VV, L2,3M2,3V, и L2,3M2,3M2,3. Две наблюдаемые линии LMV, LVV связаны с переходами, в которых участвуют электроны валентной зоны. Если при образовании сплава происходит перенос заряда, то можно ожидать изменения в заселенности валентных уровней. Это приводит к изменению формы спектров, что при дифференциальной форме записи проявляется в изменении интенсивности соответствующих линий (1). Третья линия LMM относится к процессу, в котором участвуют только основные электроны, и ее форма слабо зависит от химического окружения атома. В [7] показано, что в первом приближении величину переноса заряда можно охарактеризовать, рассматривая отношение интенсивностей типа I(LVV)/I(LMV) и I(LVV)/I(LMM). При этом уменьшение величины отношения свидетельствует об уменьшении локальной заселенности валентной зоны и наоборот. Характер изменений, наблюдаемых в спектрах 4d-металлов, аналогичен рассмотренному выше.

Рис. 1. Схема оже-переходов, наблюдаемых в 3d-металлах.

Механические свойства сплавов определялись по результатам кратковременных испытаний образцов на растяжение, а также измерения микротвердости на всех исследованных материалах. Измерения микротвердости проводились на приборе ПМТ-3. Нагрузка на индикатор составляла 25-100 г. Механические испытания проводились на машине “Инстрон” со скоростью нагружения 0.5 мм/мин с использованием образцов с отношением длины рабочей части к диаметру, равным 10.

Упругие модули определялись ультразвуковыми методами на установке “ELOSTAMAT”.

Исследование структурных особенностей никелевых сплавов показало, что размер зерна после рекристаллизационного отжига при температурах 900-12000 С в течение 1-5 часов составлял 100-150 мкм, а плотность дислокации 108 см-2. Распределение элементов по зерну было сравнительно равным.

Анализ электронной структуры сплавов выявил изменение формы линии оже-спектров никеля при его легировании. Поскольку величина эффекта была невелика, для измерений нами рассматривались только LVV и LMV линии, обладающие высокой интенсивностью. Измерения, проведенные на сплавах, содержащих 8 ат % легирующего элемента, показали, что наиболее сильные изменения отношения интенсивности имеет место при введении атомов Nb, Mo и Ti. Величина отношения постепенно уменьшается для сплавов, содержащих V и Cr, и становится практически идентичной с наблюдаемой у чистого никеля (2.36) для сплава с Fe:

Nb Mo Ti V Cr Fe

I(LVV)/

I(LMV)

2.50 2.47 2.45 2.42 2.40 2.36

Для систем, содержащих Co и Fe, эта величина не может быть определена вследствие наложения спектров матрицы и легирующего элемента.

Анализ также показал, что в сплавах происходит сильная деформация оже-спектров вводимых элементов. Наиболее она заметно проявляется у Zr, Nb, Mo и Ta. Так, для спектров Ti наблюдается изменение интенсивности и формы линий LMV с энергией 418 эВ и LMM с энергией 387 эВ, в результате чего их отношение I(LMV)/I(LMM) изменяется от значения 1.37 в чистом металле до 1.02 в сплаве (рис. 2).

Рис.2. Изменение характера дифференциального оже-спектра Ti (1) при его введении в никель (2).

Эти изменения в спектре указывают на то, что при введении в качестве легирующего элемента Ti происходит значительный перенос заряда с атомов легирующего элемента на атомы металла-матрицы. Расчеты, проведенные для этой системы в работе [9], дают величину переноса заряда Dq=0.82.

Модуль Юнга при легировании изменяется незначительно. При легировании никеля переходными металлами в количестве до 8 ат % его изменения не превышали 5 % (в случае Mn он уменьшается на 10 %). Легирование никеля переходными металлами привело к упрочнению сплавов, причем степень упрочнения при легировании элементами 4d-ряда (Zr, Nb, Mo) была выше, чем элементами 3d-ряда (Ti, V, Mn, Cr, Fe, Co).

Значения прочностных характеристик изменялись линейно с увеличением концентрации легирующего элемента (рис. 3).

Рис. 3. Зависимость твердости от содержания легирующего элемента в твердом растворе на основе никеля.

Анализируя характер полученных закономерностей твердорастворного упрочнения сплавов, следует обратить внимание как на особенности структурного состояния сплавов, так и на роль химической природы легирующего элемента. При этом целесообразно оценить и роль геометрического фактора, и особенности электронного строения, и взаимодействие легирующего элемента и металла-матрицы.

Исследование структур полученных сплавов показало, что определение механических свойств проводилось на материалах с однофазной структурой с размером зерна 50-150 мкм. Роль реальной структуры материала при формировании его свойств сведена к минимуму и наблюдаемые различия в механических свойствах, в основном, связана с природой легирующего элемента. В сплавах наблюдается увеличение степени твердорастворного упрочнения при введении металлов, стоящих ближе к началу периода, и его плавное снижение по мере продвижения к концу периода (рис. 4).

Рис. 4. Влияние легирующих элементов (4 ат %) на предел текучести (1), твердость (2), модуль Юнга (3) и степень переноса заряда (5) в сплавах на основе никеля. На кривой (4) отложено значение атомных радиусов легирующих элементов.

Вышеизложенное позволяет сделать следующие выводы:

показано, что легирование сплавов на основе никеля переходными металлами приводит к их твердорастворному упрочнению;

методом оже-спектроскопии выявлено наличие корреляции между степенью переноса заряда с атомов легирующих элементов на атомы металла-матрицы и величиной упрочнений;

отмечено, что для описания механизма наблюдаемого твердорастворного упрочнения необходим учет как размерного фактора, так и электростатического взаимодействия дислокаций с дополнительным зарядом, возникающим вблизи растворенного атома.

Список литературы

Fleisher R.L. // Acta. Met. 1963. 11. P. 203.

Gypen L.A., Deruyttere A. // Scripta Met. 1981. 15. P. 815.

Mishima Y., Ochiai S., Namao N., Yodogava M., Suzuki T. // Trans. of Japan Inst. of Metals. 1986. 27. № 9. P. 656.

Donald I.W., Davis H. // Phil. Mag. A. 1980. 42. № 3. P. 79-87.

Дунаевский С.М. // ФММ. 1983. Т. 56. № 6. С. 121-126.

Alanso J.I., Grififalo L.A. // J. Phys. Chem. Sol. 1978. 39. № 1. P. 79-87.

Yashat S., Sen P., Manganth S., Rao R. // J. Chem. Soc. Faraday Tans. 1983. 79. P. 1229-1236.

Дементьев А.П., Джибути Т.М., Раховский В.И. // Поверхность. Физика, химия, механика. 1987. № 3. С. 96-98.

Stelanou N., Oswald A., Zeller R., Dederichs P.H. // Phys. Rev. B. 1987. Vol. 35. № 13. P. 6911-6922.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений21:54:27 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
14:53:34 24 ноября 2015
легировал гальванические осадки никеля перехъодными металами от марганца до тантала. Цель макс. твердость .
Сергей 01:10:45 20 августа 2009
легировал гальванические осадки никеля перехъодными металами от марганца до тантала. Цель макс. твердость .
Сергей 01:09:18 20 августа 2009
легировал гальванические осадки никеля перехъодными металами от марганца до тантала. Цель макс. твердость .
Сергей 01:09:11 20 августа 2009Оценка: 4 - Хорошо

Работы, похожие на Статья: Влияние особенностей электронной структуры на твердорастворное упрочнение сплавов на основе никеля

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151082)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru