Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Алгебра логики

Название: Алгебра логики
Раздел: Рефераты по математике
Тип: реферат Добавлен 23:12:53 17 ноября 2004 Похожие работы
Просмотров: 6492 Комментариев: 10 Оценило: 16 человек Средний балл: 3.1 Оценка: 3     Скачать

Реферат выполнили ученики 10 класса «В» Криницин Валерий, Урбанович Дмитрий

Министерство науки УР

Средняя школа № 12

Сарапул, 2004 г.

1. Введение

Целью данной работы было выяснение сути алгебры логики, основных методов работы с логическими операторами, роли логики в вычислительной технике и информатике. Для выполнения этой работы потребовалось найти методические материалы по теме, решить некоторые опытные задачи и сделать выводы. Предмет исследования - операции над логическими функциями.

В реферате будут рассмотрены следующие вопросы:

1) Возникновение логики.

Здесь приводится краткая историческая справка возникновения логики как науки.

2) Булевы функции.

Здесь будут рассмотрены особые математические функции от логических аргументов.

3) Преобразование выражений, состоящих из булевых функций.

Особое значение имеет упрощение логических выражений, т.к. это соответствует сути экономики – хозяйственной деятельности человека.

4) Нахождение исходного выражения по его значениям.

Благодаря особым свойствам логических функций, возможно их восстановление, зная только значения функции при определённых аргументах.

5) Применение в вычислительной технике и информатике.

2. Алгебра логики.

Возникновение логики.

Понятие логики как науки появилось ещё в XIX в., т.е. задолго до появления науки информатики и компьютеров. Элементы математической логики можно найти уже в работах древнегреческих философов. В XVII в. Г. В. Лейбниц высказал идею о том, что рассуждения могут быть сведены к механическому выполнению определенных действий по установленным правилам. Однако как самостоятельный раздел математики логика начала формироваться только с середины XIX в..

Для того чтобы рассуждать, человеку необходим какой-либо язык. Не удивительно, что математическая логика начиналась с анализа того, как говорят и пишут люди на естественных языках. Этот анализ привёл к тому, что выяснилось существование формулировок, которые невозможно разделить на истинные и ложные, но, тем не менее, выглядят осмысленным образом. Это приводило к возникновению парадоксов, в том числе в одной из фундаментальных наук математики. Тогда было решено создать искусственные формальные языки, лишённого «вольностей» языка естественного.

Булевы функции.

Пусть имеется некоторый набор высказываний, о которых можно говорить определённо, что они истинные или ложные. Обозначим их латинскими буквами A, B, C, D … .

Если у нас есть два простых предложения, то из них образовать новое, сложносочинённое предложение с помощью союзов «или» либо «и». В математической логике для этой цели используются специальные символы:

- знак дизъюнкции v

- знак конъюнкции & (иногда используется ^)

Таким образом, из утверждений A, B с помощью знаков дизъюнкции и конъюнкции получим новые утверждения:

- A v B («A или B»)

- A & B («A и B»)

Утверждение A vB считается истинным тогда и только тогда, когда истинно хотя бы одно из исходных утверждений; утверждение A & B – когда истинны оба утверждения.

Дизъюнкцию и конъюнкцию можно рассматривать как особые операции, определённые не на числах, а на логических значениях ИСТИНА и ЛОЖЬ. Для этих операций существуют таблицы, подобные таблице умножения.

A B A vB

ИСТИНА

ИСТИНА

ЛОЖЬ

ЛОЖЬ

ИСТИНА

ЛОЖЬ

ИСТИНА

ЛОЖЬ

ИСТИНА

ИСТИНА

ИСТИНА

ЛОЖЬ

A B A & B

ИСТИНА

ИСТИНА

ЛОЖЬ

ЛОЖЬ

ИСТИНА

ЛОЖЬ

ИСТИНА

ЛОЖЬ

ИСТИНА

ЛОЖЬ

ЛОЖЬ

ЛОЖЬ

Логические значения ИСТИНА и ЛОЖЬ называют также булевыми значениями – в честь английского математика Джорджа Буля, который в XIX в. заложил основы современной математической логики. Функции с булевыми аргументами называют булевыми функциями. Всего булевых функций от 2 переменных – 16. Для всех булевых функций от двух переменных имеются соответствующие конструкции на русском языке. В информатике в основном используются следующие булевы функции:

- логическое ИЛИ (дизъюнкция)

- логическое И (конъюнкция)

- логическое отрицание («НЕ», обозначается ~ и противоположно своему аргументу)

- исключающее ИЛИ

Из этих основных складываются комбинированные функции: ИЛИ-НЕ, И-НЕ. Именно они получили наибольшее распространение в логической электронике, в компьютерах.

Преобразование выражений, состоящих из булевых функций.

В математической логике преобразование выше указанных выражений проводится для различных целей – от упрощения исходного до доказательства утверждений. В информатике же оно используется в основном для упрощения, ведь при производстве цифровой электроники, как и любого другого товара, требуются наименьшие затраты. Для упрощения булевых выражений используются те же методы, что и при упрощении алгебраических. Для начала была проведена аналогия между алгебраическими операторами от двух аргументов (сложение, вычитание, умножение и т.д.) и булевыми. Было выяснено, что умножение и логическое «И» обладают сходными свойствами:

- от перестановки мест аргументов результат не изменяется

A & B = B & A

- существует следующий закон

A & (B & C) = (A & B) & C

Также существуют некоторые тождества, опирающиеся на особые свойства функции, например:

1) A & (~A) = ЛОЖЬ

2) (~A) & (~B) = ~ (A v B)

Аналогично, сложение и логическое «ИЛИ»:

- от перестановки мест аргументов результат не изменяется

A v B = B v A

- существует следующий закон

(A v B) v С = A v (B v C)

- можно выносить общий множитель за скобки

(A & B) v (С & B) = B & (A v C)

И также некоторые собственные законы:

1) A v (~A) = ИСТИНА

2) (~A) v (~B) = ~ (A & B)

Когда вычисляется значение булевого выражения, то выполняется определённая очерёдность действий: на очерёдность влияют скобки, сначала считаются «И», затем «ИЛИ». Благодаря этой очерёдности возможно создание электронных цифровых схем.

Нахождение исходного выражения по его значениям.

В отличие от алгебраических выражений, булевы можно восстановить, зная их аргументы и соответственные им значения. Пусть нам дана булева функция от 3 переменных:

X1 X2 X3 F

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

1

0

1

0

1

Составим для неё таблицу и условимся обозначать ИСТИНУ - 1, а ЛОЖЬ – 0.

Для начала выпишем все аргументы функции, при которых функция равна 1.

Это:

F (1, 1, 0) = 1

F (1, 0, 1) = 1

F (1, 1, 1) = 1

Теперь запишем 3 таких выражения (функция принимает значение 1 три раза), что они принимают значение 1 только при вышеуказанных значениях.

X1 & X2 & (~X3)

X1 & (~X2) & X3

X1 & X2 & X3

И запишем их логическую сумму:

(X1 & X2 & (~X3)) v (X1 & (~X2) & X3) v (X1 & X2 & X3) – это выражение принимает значение 1 при тех же значениях, что и исходная функция. Полученное выражение можно упростить.

(X1 & X2 & (~X3)) v (X1 & (~X2) & X3) v (X1 & X2 & X3) =

= X1 & ((X2 & (~X3)) v ((~X2) & X3) v (X2 & X3)) =

= X1 & ((X2 & (~X3)) v X3 & ((~X2) v X2)) =

= X1 & ((X2 & (~X3)) vX3) – эта формула несколько длиннее исходной, но намного проще полученной в первый раз. Дальнейшие пути упрощения более сложны и представляют большой интерес для проектировщиков интегральных микросхем, т.к. меньшее число операций требует меньшее число элементов, их которых состоит ИС.

Применение в вычислительной технике и информатике.

После изготовления первого компьютера стало ясно, что при его производстве возможно использование только цифровых технологий – ограничение сигналов связи единицей и нулём для большей надёжности и простоты архитектуры ПК. Благодаря своей бинарной природе, математическая логика получила широкое распространение в ВТ и информатике. Были созданы электронные эквиваленты логических функций, что позволило применять методы упрощения булевых выражений к упрощению электрической схемы. Кроме того, благодаря возможности нахождения исходной функции по таблице позволило сократить время поиска необходимой логической схемы.

В программировании логика незаменима как строгий язык и служит для описания сложных утверждений, значение которых может определить компьютер.

3. Заключение.

Итак, логика возникла задолго до появления компьютеров и возникла она в результате необходимости в строгом формальном языке. Были построены функции – удобное средство для построения сложных утверждений и проверки их истинности. Оказалось, что такие функции обладают аналогичными свойствами с алгебраическими операторами. Это дало возможность упрощать исходные выражения. Особое свойство логических выражений – возможность их нахождения по значениям. Это получило широкое распространение в цифровой электронике, где используются логические элементы, и программировании.

Список литературы

1. «Компьютер» Ю. Л. Кетков, изд. «Дрофа» 1997 г.

2. «Математика» Ю. Владимиров, изд. «Аванта+» 1998 г.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений21:59:07 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
09:23:23 24 ноября 2015
Fuck you niger!
20:51:28 22 декабря 2011Оценка: 2 - Плохо
нормально понятно
мтс14:51:23 20 сентября 2011
редиска
18:27:35 02 сентября 2011

Смотреть все комментарии (10)
Работы, похожие на Реферат: Алгебра логики
Основы дискретной математики
Федеральное агентство по образованию Новомосковский институт (филиал) Государственного образовательного учреждения высшего профессионального ...
В качестве аргументов логические функции И, ИЛИ, НЕ одинаково трактуют значения "0" и "ЛОЖЬ", 1 и "ИСТИНА", а в качестве результата выдают только значения "ЛОЖЬ" или "ИСТИНА".
Индекс i логической функции fi (x1; x2; x3; x4)
Раздел: Рефераты по информатике, программированию
Тип: учебное пособие Просмотров: 4174 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Конспект лекций по дискретной математике
Приложение Булевой алгебры к синтезу комбинационных схем Двоичная система логики: 1. Элементы Булевой алгебры: а) числа b) переменные с) операции d ...
Два числа: логический ноль и логическая единица в Булевой алгебре отождествляются с понятиями "истина" и "ложь".
Булевой (логической) функцией называется такая функция, аргументами которой являются булевы переменные, и сама функция принимает значение из множества ноль и единица.
Раздел: Рефераты по математике
Тип: реферат Просмотров: 1650 Комментариев: 4 Похожие работы
Оценило: 2 человек Средний балл: 2 Оценка: неизвестно     Скачать
Дискретная математика
Министерство образования и науки Российской Федерации Российский химико-технологический университет им. Д.И. Менделеева Новомосковский институт ...
При X1 = X2 = 0 имеем k = 0. При Х1 = 1, X2= 0 имеем b= 1. При Х1= 0, Х2= 1 имеем с= 1. При X1=Х2= 1 имеем а + b + с = 1, т. е. а = -1. Таким образом, получаем:
Ранее мы рассматривали ситуации, когда на множество аргументов или логических переменных x1, x2,., xn не накладывались ограничения, или, что то же самое, функции были определены на ...
Раздел: Рефераты по математике
Тип: учебное пособие Просмотров: 5203 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 2 Оценка: неизвестно     Скачать
Информатика и программное обеспечение ПЭВМ
Оглавление Лекция 1. ОСНОВНЫЕ ПОНЯТИЯ ИНФОРМАТИКИ 1.1 Понятие, содержание, объект и предмет информатики 1.2 Задачи, роль и место курса информатики в ...
Логической функцией от набора логических переменных (аргументов) f(x1, x2 ..., xn) называется функция, принимающая только два значения: истина или ложь.
2. Ассоциативный закон: x1 V (x2 V x3) = (x1 V x2) V x3,
Раздел: Рефераты по информатике, программированию
Тип: учебное пособие Просмотров: 6256 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Основы анализа и синтеза комбинационных логических устройств
... химико-технологический университет им. Д. И. Менделеева Новомосковский институт Основы анализа и синтеза комбинационных логических устройств
Основой анализа и синтеза логических устройств является алгебра логики (булева алгебра).
Функция f(x1,x2,x3,...,xn) называется логической (булевой, переключательной), если она, также как и ее аргументы, может принимать только два значения - "истинно" 1 или "ложно" 0.
Раздел: Рефераты по информатике, программированию
Тип: учебное пособие Просмотров: 20884 Комментариев: 3 Похожие работы
Оценило: 3 человек Средний балл: 4 Оценка: неизвестно     Скачать
Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ ...
Кольцом называется числ. множ. На котором выполняются три опер-ии: слож, умнож, вычит. Полем наз. Числ множ. На котором выполняются 4 операции: слож ...
Запись: (a,b)=a+b*i алгеб-я, ѭ=|ѭ|*(cosѭ+i*sinѭ) триг-я, где |ѭ|=; cosѭ=a/|ѭ|; sinѭ=b/|ѭ|. 1. Чтобы умнож-ть 2 к.ч. в триг-м виде, нужно переем-ть их модули и сложить аргументы ...
a(x1,y1,z1) b(x2,y2,z2) c(x3,y3,z3)
Раздел: Рефераты по математике
Тип: реферат Просмотров: 3491 Комментариев: 3 Похожие работы
Оценило: 3 человек Средний балл: 3 Оценка: неизвестно     Скачать
Булевы функции
1.Основные понятия булевой алгебры Технические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математического аппарата ...
Таким аппаратом является математическая логика (алгебра логики, булева алгебра).
Функция f, зависящая от n переменных x1,x2,...,xn, называется булевой, или переключательной, если функция f и любой из ее аргументов принимают значения только из множества {0,1 ...
Раздел: Рефераты по математике
Тип: контрольная работа Просмотров: 8904 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Цифровая схемотехника
Министерство Российской Федерации Томский политехнический университет _ Е.Л. Собакин ЦИФРОВАЯ СХЕМОТЕХНИКА Часть I Учебное пособие
Как и в формальной логике, все высказывания могут быть истинными либо ложными, так и логические функции могут принимать только два условных значения: логической единицы (лог.1 ...
Если Х1 есть некоторый фиксированный набор значений аргументов функции f (x1,x2,x3,x4), например Х1 = <x1, x2, x3, x4> = <1,1,0,1>, а Х2 = <x1, x2, x3, x4> = <0,0,0,1> - другой ...
Раздел: Рефераты по коммуникации и связи
Тип: учебное пособие Просмотров: 1883 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
ЛИСП
Лабораторная работа № 1. Тема: Ознакомительная работа в среде MuLisp. Базовые функции Лиспа. Символы, свойства символов. Средст-ва языка для работы с ...
T - обозначает логическое значение истина, а NIL - логическое значение ложь.
2. Напишите с помощью композиции условных выражений функции от четырех аргументов AND4(x1 x2 x3 x4) и OR4(x1 x2 x3 x4), совпадающие с функциями AND и OR от четырех аргументов.
Раздел: Рефераты по информатике, программированию
Тип: реферат Просмотров: 2972 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Реферат: Алгебра логики (4850)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150883)
Комментарии (1841)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru