Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Доклад: Классические основания квантовой механики

Название: Классические основания квантовой механики
Раздел: Рефераты по математике
Тип: доклад Добавлен 19:58:23 19 декабря 2004 Похожие работы
Просмотров: 146 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Валерий Эткин

Немалое число людей, так или иначе связанных с наукой, испытывает острую неудовлетворенность существующей тенденцией современной физики «угадывать уравнения, не обращая внимания на физические модели или физическое объяснение» (Р. Фейнман, 1976 г.). В полной мере относится это и к основополагающему уравнению квантовой механики, явившемуся плодом гениальной интуиции его автора (Э. Шрёдингер, 1926 г.). Между тем уравнение такого типа можно получить и из классической физики, если допустить, что при торможении электронов в их движении по устойчивым некруговым (например, эллиптическим) орбитам их кинетическая энергия Ek переходит не только в потенциальную энергию атома как целого, но и частично отдается последним в окружающую среду в форме лучистой энергии*.

* Последнее следует из неравновесной термодинамики (Де Гроот С., Мазур П., 1964; Эткин В.А., 1999), согласно которой протекание какого-либо неравновесного процесса (в том числе процесса торможения электрона) связано с преодолением всех действующих в системе термодинамических сил, т.е. с преобразованием энергии в другие ее формы, соответствующие этим силам. Из нее следует также, что при этом излучают не электроны, а атом как неравновесная в целом система, поскольку энергия принадлежит, строго говоря, всей совокупности взаимодействующих (взаимно движущихся) тел или частей тела, и лишь в исключительных случаях может быть приписана одному из них.

Это возможно, если атом на различных фазах орбитального движения электронов (торможение – ускорение) то излучает, то поглощает одно и то же количество энергии. В противном случае электрон переходит на нижележащую или вышележащую орбиту, параметры которой определяются величиной потерянной или приобретенной энергии. Соответственно изменяется и частота излучения. В этом порядке идей переход на нижележащую орбиту является следствием излучения, а не наоборот (как в теории Бора). Такой процесс излучения или поглощения имеет конечную длительность, определяемую орбитальной скоростью электрона и длиной участков торможения или ускорения. Потому-то излучение и осуществляется порциями (квантами).

Поскольку излучение происходит на тех участках орбиты, где происходит торможение электрона в его движении относительно ядра, частота излучения ν равна, очевидно, числу оборотов электрона в единицу времени. Последнее представляет собой частное от деления модуля орбитальной скорости v на длину орбиты (или эквивалентной ей окружности радиусом a (ν = v/2πa). В таком случае соответствующая этой частоте длина волны излучения λ ≡ c/ν определяется простым выражением:

λ = 2πca/ν = 2πme ca/me ν = h/pe , (1)

где с – скорость света в вакууме; me – масса покоя электрона; pe = me ν – его импульс; h = 2πme ca – постоянная для данной орбиты величина.

Согласно этому выражению, каждому виду атомов с некруговыми орбитами электронов соответствуют определенные длины волн излучения, зависящие от свойств вещества(импульса электронов и радиуса их орбит). Тем самым гипотеза де Бройля (1926 г.) о том, что волновые свойства присущи всем веществам, получает обоснование в рамках классической физики. Легко видеть, что при этом частота излучения ν согласно (1) оказывается пропорциональной импульсу электрона pe :

hν = me vc = pe c . (2)

Это положение также соответствует идеям де Бройля.

Таким образом, при движении электронов по устойчивым некруговым орбитам в атомах возникает колебательный процесс, обусловленный циклическим изменением кинетической энергии электронов Ek . Этот процесс описывается известным уравнением монохроматической пространственной волны

(3)

где ψ – «волновая функция», т.е. параметр системы, являющийся функцией пространственных координат и отклоняющийся в колебательном процессе от своего равновесного значения.

Учитывая, что в соответствии с соотношением (1) λ2 = h2 /p2 и p2 = 2m0 Ek , где Ek определяется разностью между полной энергией атома (его гамильтонианом) Е и потенциальной энергией U, после подстановки в (3) и простейших преобразований приходим к основополагающему уравнению квантовой механики в виде:

(4)

Это уравнение отличается от стационарного (не зависящего от времени) уравнения Шрёдингера тем, что в нем универсальная постоянная Планка ħ заменена функцией радиуса орбиты h = h(a). Связь между ħ и h нетрудно установить, если в соответствии с ОТО выразить ν через импульс фотона pф известным соотношением ħν = pф c. Тогда из (1) следует, что h = ħpe /pф . Так «перекидывается мостик» между квантовой и классической механикой.

Предложенный вывод «классического» аналога уравнения Шрёдингера не опирается на какие-либо гипотезы и постулаты. Это выгодно отличает его от обоснования, данного самим Шрёдингером, которое всегда представлялось исследователям не вполне убедительным. В особенности это замечание касается физического смысла функции ψ. В его толковании среди наиболее крупных физиков-теоретиков до сих пор отсутствует единодушие. В большинстве своем они трактуют функцию ψ как величину, квадрат которой, будучи умноженным на элемент объема dV, характеризует вероятность ψ2 dV нахождения частицы в заданной области пространства. Это понятие предполагает индетерминизм даже на уровне элементарных процессов, т.е. утрату квантовой механикой способности предсказывать события (определять последующие значения параметров по предшествующим). Вместе с тем применение понятия вероятности к отдельному атому или отдельной молекуле в известный момент времени довольно бессмысленно, так как последние обладают вполне определенным значением кинетической энергии, находятся в определенном месте и движутся в определенном направлении. В изложенном же порядке идей волновая функция приобретает простой и ясный смысл энергии электрона как функции параметров его орбитального движения. Так решается, пожалуй, самый принципиальный из физических вопросов, связанных с квантовой механикой. Наряду с этим устраняется одна из принципиальных трудностей классической электродинамики, состоящая в невозможности объяснить существование устойчивых орбит электронов из-за кажущейся неизбежности их «падения» на ядро при излучении ими энергии. Такое излучение с позиций классической электродинамики должно иметь место даже тогда, когда величина скорости электрона остается неизменной (изменяется лишь направление вектора скорости на орбите). Если же излучение порождается исключительно процессом превращения кинетической энергии в другие формы, направление скорости уже не играет роли.

Известно, что консервативные системы (E = const), подчиняющиеся этому уравнению, могут обладать только вполне определенными значениями энергии. Это же следует и из выражения (1), согласно которому определенным длинам волн спектра излучения атомов соответствуют определенные радиусы электронных орбит. Таким образом, идея «квантования» энергии электронов и их орбит также естественным образом вытекает из классических представлений.

Предложенный подход выгодно отличается также от атомной механики Бора, которая хотя и придерживалась в основном классических принципов, потребовала ряда дополнительных постулатов. Наиболее уязвимым из них явилось допущение о том, что электрон излучает в момент перехода с одной орбиты на более низкую, так что частота излучаемых волн зависит как от начальной, так и от конечной энергии атома. Отсюда следовало, что электрон либо каким-то непостижимым образом «знает» о будущей орбите, либо излучает только после попадания на конечную стационарную орбиту. Ввиду неприемлемости обоих следствий это положение всегда оставалось самым непонятным и слабым звеном в теории Бора. С изложенных позиций электрон переходит на нижележащую орбиту лишь после того, как атом излучает энергию. Тем самым устраняется основная трудность теории Бора.

Представление о том, что излучают не электроны, а атомы, объясняет также результаты опытов по «дифракции электронов», поскольку позволяет допустить, что дифракционную картину создают не электроны, а возбуждаемые ими атомы вокруг отверстия, через которое они пролетают. Тем самым проливается новый свет на дуализм «волна – частица».

Однако наиболее важным результатом предложенного подхода являются дополнительные возможности нахождения параметров электронных орбит по данным спектроскопических наблюдений. В частности, по известным длинам волн излучения λ или волновым числам νλ ≡ 1/λ = ν/c можно найти радиус i-й устойчивой электронной орбиты ai атомов, излучающих на этой частоте. Исходя из равенства на такой орбите центробежной силы fω = me v2 /ai силе взаимодействия электрона с ядром fr = e2 /ai 2 , после подстановки в выражение νλ = p/hc несложно найти радиус электронной орбиты, соответствующий определенной частоте излучения:

ai = (e2 /4π2 c2 me νλ 2 )–3 м. (5)

После этого нетрудно найти среднюю орбитальную скорость электронов v = 2πai ν, кинетическую энергию электрона на i-й орбите Ek = me v2 /2 и число оборотов электрона на орбите n = ν. Однако вопрос о соответствии такого подхода результатам экспериментов остается при этом открытым.

Список литературы

Де Бройль Л. Ann. DePhys, V. 10, 1925, p. 22. Перевод с фр.: «Введение в волновую механику». – Харьков – Киев, 1934.

Фейнман Р. Нобелевская лекция. Пер. с англ. М.: Наука, 1976.

Шрёдингер Э. Ann. Phys., Bd. 79, 1926, p. 361, 489; Bd. 80, 1926, p. 437; Bd. 81, 1926, p. 109. Перевод с нем.: «Четыре лекции по волновой механике». – Харьков – Киев, 1936.

Де Гроот С., Мазур П. Неравновесная термодинамика, М.: Мир, 1964.

Эткин В.А. Термодинамика неравновесных процессов переноса и преобразования энергии. Саратов: Изд-во СГУ, 1991.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений21:52:05 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
09:19:17 24 ноября 2015

Работы, похожие на Доклад: Классические основания квантовой механики

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151258)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru