Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Общие положения SDH и PDH

Название: Общие положения SDH и PDH
Раздел: Рефераты по радиоэлектронике
Тип: реферат Добавлен 05:08:28 14 июля 2005 Похожие работы
Просмотров: 2923 Комментариев: 2 Оценило: 1 человек Средний балл: 3 Оценка: неизвестно     Скачать

Министерство РФ по связи и информатизации

Уральский Государственный Технический Университет - УПИ

Кафедра "ТиСС"

Отчет

по производственной практике

на ОАО «ЕГУЭС Уралтелеком»

Руководитель практики от предприятия:

Руководитель практики от УГТУ-УПИ:

Время прохождения: с 5 августа по 15 сентября 2002 г.

Студент: Черепанов К.А

Группа: Р-407

Екатеринбург

2002


Содержание:

Список сокращений........................................................................................................................................................................... 3

Предыстория SDH................................................................................................................................................................................... 5

Сети SDH......................................................................................................................................................................................................... 6

Цикл SDH......................................................................................................................................................................................................... 7

Структура цикла................................................................................................................................................................................... 7

Мультиплексирование................................................................................................................................................................... 7

Анализ заголовка................................................................................................................................................................................. 8

Трактовый заголовок............................................................................................................................................................................ 8

Байты трактового заголовка........................................................................................................................................................... 9

Мультиплексорный заголовок.......................................................................................................................................................... 9

Байты заголовка мультиплексорной секции................................................................................................................................. 9

Заголовок регенерационной секции............................................................................................................................................ 10

Байты заголовка регенерационной секции.................................................................................................................................. 10

Анализ полезной нагрузки........................................................................................................................................................ 10

Указатели полезной нагрузки............................................................................................................................................... 10

Компонентные блоки и структурная схема мультиплексирования сигнала SDH.............. 11

Управление сетью............................................................................................................................................................................ 12

Список сокращений

Русские сокращения.

АТС Автоматическая телефонная станция
ВОСП Волоконно-оптическая система передачи
ИКМ Импульсно-кодовая модуляция
ИКМ-30 Сокращение, используемое для обозначения потока Е1 с цикловой и сверхцикловой структурой
ИКМ-31 Сокращение, используемое для обозначения потока Е1 с цикловой структурой
ЛАЦ Линейно-аппаратный цех (иногда применяется ЛАЗ - линейно-аппаратный зал)
МВВ Мультиплексор ввода/вывода
МККТТ Международный комитет по телефонии и телеграфии
МСЭ Международный союз электросвязи
МСЭ-Т Международный комитет по телефонии и телеграфии (новое название)
ОКС 7 Система сигнализации по ОКС №7
ОЦК Общий цифровой канал (канал 64 кбит/с)
ПД Передача данных
ПО Программное обеспечение
ПСП Псевдослучайная двоичная последовательность
рек. Рекомендация
РРЛ Радиорелейная линия связи
ССС Спутниковая система связи
ТЧ Канал тональной частоты
УПАТС Учрежденческая производственная АТС

Иностранные сокращения.

ADM &nbspAda-Drop Multiplexor Мультиплексор ввода/вывода - МВВ
ANSI &nbspAmerican National Standard Institute Американский национальный институт стандартов
APS &nbspAutomatic Protection Switching &nbspАвтоматическое переключение
ATM &nbspAsynchronous Transfer Mode &nbspРежим асинхронной передачи
AD Administrative Unit Административный блок
AUG &nbspAdministrative Unit Group &nbspГруппа административных блоков
AU-PJE &nbspAU Pointer Justification Event Смещение указателя AU
BBE &nbspBackground block error Блок с фоновой ошибкой
BBER Background block error rate Коэффициент ошибок по блокам с фоновыми ошибками
BER &nbspBit Error Rate Параметр ошибки по битам, равен отношению количества ошибочных битов к общему количеству переданных
BIN &nbspBinary Двоичное представление данных
BIP Bit Interleaved Parity Метод контроля четности
B-ISDN Broadband Integrated Service Digital &nbspШирокополосная цифровая сеть с интеграцией Networks служб (Ш-ЦСИС)
CRC Cyclic Redundancy Check Циклическая проверка по избыточности
CRC ERR CRC errors Число ошибок CRC
DEMUX Demultiplexer Демультиплексор
ETS European Telecommunication Standard Европейский телекоммуникационный стандарт
ETSI European Telecommunication Standard Institute Европейский институт стандартизации в теле-kоммуникациях, протокол ISDN, стандартизированный ETSI
FEBE Far End Block Error Наличие блоковой ошибки на удаленном конце
FERF Far End Receive Failure Наличие неисправности на удаленном конце
HEX Hexagonal 16-ричное представление информации
НО-РОН High-order POH Заголовок маршрута высокого уровня
ISDN Integrated Service Digital Networks Цифровая сеть с интеграцией служб (ЦСИС)
ITU International Telecommunication Union Международный Союз Электросвязи
ITU-T International Telecommunication Union-Telephony group Международный Союз Электросвязи подразделение телефонии
LO-POH Low-order POH Заголовок маршрута низкого уровня
M1, М2 Management Interface 1, 2 Интерфейсы управления
MSOH Multiplexer Section Overhead Заголовок мультиплексорной секции
MSP Multiplex Section Protection Цепь резервирования мультиплексорной секции
MUX Multiplexer Мультиплексор
OSI Open System Interconnection Эталонная модель взаимодействия открытых систем
РОН Path Overhead Заголовок маршрута
PTR Pointer Указатель в системе SDH
RGEN, REG Regenerator Регенератор
RSOH Regenerative Section Overhead Заголовок регенераторной секции
SDH Synchronous Digital Hierarchy Синхронная цифровая иерархия
SDXC Synchronous Digital Cross Connect Синхронный цифровой коммутатор
SOH Section Overhead Секционный заголовок
STM Synchronous Transport Module Синхронный транспортный модуль - стандартный цифровой канал в системе SDH
ТСМ Tandem Connection Monitoring Мониторинг взаимного соединения
ТМ Traffic Management Управление графиком
TMN Telecommunications Management Автоматизированная система управления связью
TU Tributary Unit Блок нагрузки
TUG Tributary Unit Group Группа блоков нагрузки
VC Virtual Container Виртуальный контейнер

Предыстория SDH

SDH (SONET- североамериканский аналог)– это стнадарт для ‘высокоскоростных-высокопроизводительных’ оптических сетей связи; более известный, как синхронная цифровая иерархия (S ynchronous D igital H ierarchy, S ynchronous O ptical NET work), предназначенный для обеспечения простой, экономичной и гибкой инфраструктуры сети связи.

До SDH имела место плезиохронная цифровая иерархия или PDH (P lesiochronous D igital H ierarchy), в стуктуре сигнала которой не было места для сигналов управления и обслуживания сети.

Рис1.1 Рис1.2

Сети передачи PDH с высокой пропусконой способностью основаны иерархии цифровых мультиплексированных сигналов от Е.1 до Е.4.

Базовый блок – первичная скорость 2048 Мб/с (Е.1) может состоять из 30 каналов ТЧ по 64 кб/с. Эти блоки можно объединить и передавать с более высокой скоростью по высокоскоростным системам передачи. Четыре сигнала первичной скорости могут быть мультиплексированы до вторичной скорости Е.2 8448 Мб/с и так далее до скорости 139 Мб/с (Е.4). Таким образом, скорость 139 Мб/с представляет 64*2048Мб/с сигналов или 1920 мультиплексированных каналов ТЧ.

Однако, до SDH не имелось никаких стандартов, которые гарантировали бы работу обрудования производителей в одной системе, более того, в плезиохронной сети обращение к одному индивидуальному компоненту требует демультиплексирования всего сигнала, следовательно, затраты повышаются из-за демультиплексирования и они удваиваются, потому что встает необходимость повторно мультиплексировать сигнал.

Острая необходимость в стандартизации синхронных волоконно-оптических сетей была осознана, лишь когда стали ясны преимущества этих сетей перед плезиохронными и полным ходом шли разработка и внедрение оборудования для них. Телекоммуникационные операторы ощутили это первыми. Попытки состыковать оборудование разных производителей к положительному результату не привели. В начале 1984 г. в США состоялся Форум по совместимости систем передачи, который обратился в Американский национальный институт стандартов (ANSI) с просьбой о скорейшем принятии спецификаций синхронной передачи по волоконно-оптическим сетям. Цель данной стандартизации - сопряжение оборудования различных производителей на уровне оптических интерфейсов.

Задача была поставлена перед двумя комитетами ANSI: T1X1, занимающимся цифровой иерархией и синхронизацией, и T1M1, решающим вопросы сетевого администрирования и эксплуатации. В результате проделанной этими комитетами работы родился черновой вариант стандарта под названием SYNTRAN, основывающийся на скорости передачи 45 Mбит/с. Однако время шло, и производители создали новые системы. Компания АТ&T, применив самые новейшие технологии, произвела на свет систему METROBUS, скорость передачи которой составляла уже 150 Мбит/с. В 1985 г. комитет T1X1 по предложению компании Bellcore принял решение сформулировать стандарт, базирующийся на концепции синхронной сети как единого целого (SONET, Synchronous Optical NETwork), который будет определять наряду с оптическим интерфейсом формат сигнала и скорость его передачи.

На этом этапе стандартизации европейские институты не проявляли большого интереса к SONET. Исторически сложилось так, что иерархии скоростей передачи в США и Европе основывались на различных базовых скоростях сигналов - Т1 (1,544 Мбит/с) и Е1 (2,048 Мбит/с) соответственно. Чтобы избежать углубления этой пропасти, требовалось участие Европы в развитии стандартов синхронной передачи. Однако заинтересовать Европу можно было лишь возможностью поддержки стандартом SONET 2-мегабитной иерархии.

Летом 1986 г. МККТТ(в настоящее время комитет T в МСЭ, или ITU-T) наконец решил навести порядок, создав единый стандарт, который удовлетворил бы обе стороны, т. е. поддерживал бы как европейскую, так и американскую иерархии. В июле 1986 г. рабочая группа XVII МККТТ начала работу над новым стандартом синхронной цифровой иерархии (SDH). Полтора года ушло на согласование рекомендаций. В феврале 1988 г. комитет T1X1 принял предложения МККТТ по изменению стандарта SONET. Рабочая группа XVIII утвердила три рекомендации, относящиеся к SDH, которые были опубликованы в "Синей книге":

G.707. - базовые скорости SDH;

G.708. - сетевой интерфейс узла SDH;

G.709. - структура синхронного мультиплексирования.

Именно эти рекомендации положили начало процессу стандартизации систем SDH на более детальном уровне, который продолжается и по сей день.

Таким образом, переход от PDH к SDH решал ряд немаловажных проблем, а именно:

- Упрощение схемы построения и развития сети. Упрощение структурной схемы сети и сокращение числа требуемого оборудования стали возможными благодаря тому, что SDH-мультиплексор заменил собой по функциональным возможностям стойку мультиплексоров PDH. Плезиохронный мультиплексор демультиплексировал поток для выведения нескольких компонентных сигналов, а затем мультиплексировал весь набор компонентных сигналов снова. SDH-мультиплексор выделяет требуемые компонентные сигналы, не разбирая весь поток. Оборудования нужно меньше, требования к питанию снижаются, площади освобождаются, затраты на эксплуатацию уменьшаются.

- Высокая надежность сети. Централизованное управление сетью обеспечивает полный мониторинг состояния каналов и узлов (мультиплексоров). Использование кольцевых топологий предоставляет возможность автоматической перемаршрутизации каналов при любых аварийных ситуациях на резервный путь.

- Полный программный контроль. Управление конфигурацией сети, отслеживание и регистрация аварийных ситуаций осуществляются программными средствами с единой консоли управления. В функции центральной управляющей системы входят также средства поддержки тестирования каналов и контроля за качеством работы основных блоков мультиплексоров.

- Предоставление услуг по требованию. Создание новых или перемаршрутизация старых каналов пользователя - вопрос одного часа.

- "Высокий уровень" стандартизации SDH-технологии позволяет использовать оборудование разных фирм-производителей в одной сети.

Благодаря перечисленным преимуществам SDH стала технологией N 1 для создания транспортной сети.

Сети SDH

SDH модет использоваться во всех традиционных областях примения сетей. Только инфраструктура сети SDH обесчпечивает эффективное прямое взаимодействие между треммя главными видами сетей:

- Локальная сеть

- Сеть кольцевой стуктуры

- Магистральная сеть

Самый низки уровень сигнала назван «Синхронный Транспортный Модуль» первого уровня или STM-1, имеющий скорость 155 Мб/с. Сигналы более высокого уровня получаются мультиплексированием с «чередованием байтов» сигналов низшего уровня. Линейная скорость более высокого уровня STM-N сигнала равна произведению N на 155.52 Мбит/с, т.е. линейную скорость сигнала самого низкого уровня.

Синхронный транспортный модуль Линейная скорость (Мбит/с)
STM-1 155,52
STM-4 622,08
STM-16 2488,32

Цикл SDH

SDH сигнал транспортируется, как синхронная структура, которая включает набор байтов (по 8 бит), организованныйх как двухмерный массив – синхронный транспортный цикл.

Цикл SDH состоит из 2-х частей:

1. Секционный заголовок (SOH=RSOH+MSOH) – область сигнала, которая обеспечивается в каждом цикле SDH для выполнения функций, поддерживающих и обслуживающих транспортировку «виртуальных контейнеров» между смежными узлами сети

2. Виртуальный контейнер(VC+POH) – включает “контейнерную” область, которая несет траффик клиента – полезную нагрузку, и трактовый заголовок РОН

Байты в цикле передаются слева-> направо, сверху ->вниз, т.е цикл передается как последовательность 9 строк.

-->

Структура цикла

Цикл SDH можно представить как двухмерный массив из N-строк и M-столбцов ячеек, каждая из которых – отдельный байт синхронного сигнала. Идентичность каждого байта известна, и сохраняется относительно байтов цикловой синнхронизации, известных как А1 и А2, расположенных в самом начале массива и обеспечивающих точку отсчета, от которой определяются все остальные байты.

Для сигнала STM-1: N=9 M=270.

Расчет базовой скорости SDH производится следующим образом:

V=N (строк)*M(столбцов)*8 бит (размер ячейки)* 8000циклов/с* =155,52 Мюит/с

* -согласно теории Найквиста (удвоенная самая высокая частота канала ТЧ 4кГц)

Мультиплексирование

Более высокие скорости SDH формируютя процессом мультиплексирования сигналов более низкого уровня, таким образом, четыре параллельных и синхронных сигнала STM-1, могт быть объединены вместе методом «чередования байт», чтобы сформировать сигнал STM-4 со скоростью 4* STM-1.

STM-4 сигнал имеет 9 рядов, но уже 1800 колонок, следовательно,

SDН скорость=9 рядов*1800 колонок*8бит*8000циклов/с=622,08Мбит/с.

Двухмерное представление сигнала STM-4 составляется из индивидуальных колонок от каждой из четырех STM-1 сигнальных структур и чередованием их в повторяющейся последовательности.

Полная структура STM-4 составляется следующим образом:

- Первые 36 колонок цикла STM-4 образуют заголовок секции.

- Остальные 1044 колонки представляют 4 области полезной нагрузки, связанные с четырьмя STM-1

Анализ заголовка

Для управления и обслуживания, сеть SDH может быть представлена в виде трех отдельных участков:

Заголовок внутри SDH сигнала поддерживает обслуживание сети на уровнях тракта и секции. Заголовок секции (SOH) содержит заголовки регенерационной (RSOH) и мультиплексорной (MSOH) секций. Трактовый заголовок расположен в виртуальном контейнере (VC-4) в пределах STM-1.

Трактовый заголовок

Функции:

1. Сообщение трассы тракта

2. Контроль четности

3. Структура виртуальног контейнера

4. Тревожная сигнализации и информация о характеристиках

5. Пользовательский канал

6. Индикация сверхцикла для TU (компонентных блоков)

7. Защитное переключение трактов

Байты трактового заголовка

J1 - 16-ти или 64х байтное сообщение о маршруте тракта поддерживает непрерывную проверку между любой точкой тракта и точкой начала тракта

В3 – (побитовый контроль четности) – выполняет функцию контроля трактовых ошибок.

С2 – указыват структуру виртуального контейнера, посредством метки, выбранной из 256 возможных значений. Эта информационная структура указывает, какие полезные нагрузки размещены в пределах виртуального контейнера.

G1 – сообщение о состоянии наблюдаемых характеристик от приемного оборудования тракта к передающему.

F2 – байт оператора тракта

Н4 – индикация фазы сверхцикла TU полезных нашрузок

F3 – байт канала пользователя

К3 – обеспечение защиты на уровне тракта, переключение на индивидуальные тракты VC-4

N1 – сквозной контроль характеристики транзитной связи.

Мультиплексорный заголовок

Функции:

1. Контроль четности

2. Указатели полезной нагрузки

3. Тревожная сигнализация

4. Автоматическое защитное переключение

5. Канал передачи данных

6. Служебная связь

Байты заголовка мультиплексорной секции

Н1, 2, 3 (9 байт)– байты указателя административного блока (AU) (определяют положение начала VC-4 в пределах цикла STM-1)

В2 (3 байта) – контроль ошибок мультиплексорной секции

К1, 2 (2 байта) – защитное переключение мультиплексора

D4-D12 – для передачи управляющей и эксплуатационной информации (только для STM-1)

S1 – сообщение о состоянии синхронизации, указывает тип источника синхронизации.

Z1,2 – резерв для стандартизации

М1 – для передачи информации о зарактеристики ошибки от приемного оборудования мультиплексорной секции к передающему

Е1 – служебная связь

Заголовок регенерационной секции

Функции:

1. Контроль четности

2. Цикловая синхронизация

3. Идентификация STM-1

4. Канал пользователя

5. Канал передачи данных

6. Служебная связь

Байты заголовка регенерационной секции

А1, А2 – байты цикловой синхронизации

J0 – используется для периодической передачи 16-ти байтового сообщения о трассе регенерационной секции

В1 – контроль четности

Е1 – служебная связь

F1 – для нужд оператора

D1,2,3 – управление и обслуживание сети между регенерационной секцией и оконечным оборудованием.

Анализ полезной нагрузки

Трактовый заголовок всегда находится в первой колонке VC-4 (добавление его завершает формирование виртуального уонтейнера). Остающаяся емкость (контейнер С-4) может быть загружен 63 TU-12 или 3-мя TU-3

VC-4 может нести смесь компонентных каналов, поэтому в одном и том же VC-4 можно передавать вместе с нашими компонентами и североамериканские DS-1.

VC-4 предназначен для передачи полезной нашрузки со соростью 149 Мбит/с

Цикл STM-1 имеет 270 колонок и 9 рядов, причем 9 колонок ипользуются как заголовок секции, а 1 колонка для трактового заголовка, таким образом, фактическая емкость полезной нагрузки С-4:

260*9*8*800=149,76 Мбит/с

Указатели полезной нагрузки

VC-4 может начинатся с любой позиции в пределах области полезной нагрузки. Наиболее часто он нгачинается в одном цикле, а заканчивается в другом. Эта способность VC-4 перемещаться относительно цикла STM известна как «плавание».

Байты Н1, Н2 используются для того, чтобы идентифицировать первый байт плавающего VC-4. С помощью 3-х байт Н3 каждое регулирование перемещает VC-4 на 3 байта (т.е 3 байта относительно цикла STM).

Дело в том, что для борьбы с расхождением генераторов VC-4 может смещаться в положительную, либо отрицательную сторону на 3 байта.Это достигается изменением значения указателя полезной нагрузки в приемном элементе сети. Процесс также компенсирует любое другое фазовое рассогласование между ринятым SDН сигналом и опорным генератором SDН узла.

Несмотря на положительные стороны, указатели несут в себе и отрицательные моменты, в частности, когда полезная нагрузка плавает на 3 байта, это вызывает скачок на 24 бита. При извлечении полезной нагрузки из SDН, скачок на 24 бита вызывает джиттер, который в сво. Очередь создает проблемы для РDН сетей.

Компонентные блоки и структурная схема мультиплексирования сигнала SDH

Рис. 2

На самом низком уровне мы имеем контейнер С-n, где n варьируется от 1 до 4. Этот базовый элемент сигнала STM (Synchronous Transport Module) представляет собой группу байтов, выделенных для переноса сигналов со скоростями по рекомендации G.702. Другими словами, это то, что мы имеем на входе в SDH-мультиплексор.

Данные сигналы преобразуются в так называемые виртуальные контейнеры (VC-n), где n варьируется от 1 до 4. Виртуальные контейнеры низкого порядка формируются из контейнера С-1 или С-2 и дополнительной емкости для трактового заголовка (POH - Раth Overhead). В виртуальные контейнеры высокого порядка (n=3 или n=4) вместо С-n может входить также сборка компонентных блоков (TUG). POH включает в себя информацию для контроля характеристик VC, сигналы для техобслуживания и признаки тревожных ситуаций. В случае VC высокого порядка в POH входят еще и признаки структуры мультиплексирования.

Компонентный блок (TU-n), где n варьируется от 1 до 3, состоит из VC и указателя компонентного блока и обеспечивает сопряжение уровней высокого и низкого порядка. Значение указателя определяет согласование фазы VC с добавленным к нему POH компонентного блока. Группа компонентных блоков (TUG-n), где n=2 или n=3, - это группа идентичных TU или TUG, позволяющая осуществлять смешение полезной нагрузки.

Преймущества TU:

1. Разработан для того, чтобы четко соответствовать VC-4

2. Допускает прямой доступ к компонентам более низкого уровня

3. Обеспечивает транспортировку, добавление-выделение и коммутацию с минимальной задержкой

4. Коммутаторы и устройства добавления-выделения не должны демультиплексировать сигналы более высоких уровней, чтобы получить доступ к компонентам более низкого уровня.

Административный блок (AU-n), где n=3 или n=4, состоит из VC-3 или VC-4 и указателя AU. Он обеспечивает сопряжение путей более высокого порядка и уровня секции с мультиплексированием. Значение указателя определяется согласованием фазы VC-n с кадром STM-1. Группа административных блоков (AUG) - группа AU c чередующимися байтами - занимает фиксированное положение в нагрузке STM-1. Синхронный транспортный модуль (STM-N) содержит n групп AUG c информацией SOH(Section Overhead), касающейся кадрирования, обслуживания и работы. N групп AUG чередуются через один байт и находятся в фиксированном положении по отношению к STM-N.

Управление сетью

Одним из главным преимуществ SDН является наличие средств обслуживания для управления сетью. Контролируя траффик в элементах сети можно обнаружить и точно указать дефекты и ошибки в сигналах и сетях.

Характеристика ошибок SDН сети проверяется, используя побитовый контроль четности (BIP). Ошибки передачи, обнаруженные BIP, передаются обратным входящим потоком в исходную точку посредством сигнала индикации ошибки на дальнем конце (REI), или ошибка блока на дальнем конце FEBE. BIP и связанный с ними REI обеспечиваются на уровне мультиплексных секций, в трактах высокого уровня VC-4 и трактах низкого уровня TU.

В случае серьезной ошибки (дефекта), а именно, потери сигнала, цикла или указателя, на передающий конец посылается сообщение RDI (Remote Defect Indication – индикация удаленного дефекта, либо отаз приемника FERF- Faf End Recieve Fail). Исходящий поток элементов сети также приводится в готовность по сигналу индикации аварии AIS, посылаемому с исходящим потоком.

SDH сети спроектированы таким образом, что имеют возможность боротся с отказами, используя защитное переключение. Это достигается дублированием линий передачи между элементами сети. В случае глобального отказа, а именно, обрыва линии, элемент сети переключит передачу на дублирующую линию – защита мультиплексорной секции Multiplexer Section Protection (MSP).

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений22:24:37 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
13:31:39 24 ноября 2015

Работы, похожие на Реферат: Общие положения SDH и PDH
Проектирование магистральной волоконно-оптической системы передачи с ...
Аннотация Дипломный проект посвящен вопросу проектирования магистральной волоконно-оптической системы передачи с повышенной пропускной способностью ...
Цикл С-4 содержит 260 столбцов, его скорость передачи (объем контейнера С-4) v=64 X 9 X 260= = 149 760 кбит/с; виртуальный контейнер VC-4 образуется добавлением к С-4 заголовка РОН ...
На рис.1.25 показан VC-12. байты V5, J2, Z6 и Z7 образуют заголовок тракта, а четыре группы по 34 байта нагрузки - контейнеры С-12 с полезной ёмкостью 2176 кбит/с VC-11 и VC-12 ...
Раздел: Рефераты по коммуникации и связи
Тип: дипломная работа Просмотров: 32444 Комментариев: 2 Похожие работы
Оценило: 3 человек Средний балл: 3.7 Оценка: неизвестно     Скачать
Линейное оборудование синхронной цифровой иерархии SL16
Линейное оборудование синхронной цифровой иерархии SL16 APS Версия 3.0 Техническое описание TED S42022-L3021-H1-1-7618 SIEMENS p Synchronous Line ...
2.1.2-1 и состоящее из 261 х 9 байтов полезного сигнала (информационная часть STM-1), известно как виртуальный контейнер (VC) и состоит из двух частей: реального передаваемого ...
Блок служебной телефонной связи (DTE) и Z каналов 1 F1 (ZK11) предоставляют доступ к заголовку сигнала F1 (STM-16); блок обработки заголовка F2 (OPF2) ѭ к заголовку компонентных ...
Раздел: Остальные рефераты
Тип: реферат Просмотров: 1632 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Волоконно-оптические системы связи
Содержание Введение 1 Выбор и обоснование проектных решений 1.1 Трасса кабельной линии передачи 1.2 Характеристика оконечных и промежуточных пунктов 1 ...
В слое среды передачи находятся самые крупные структуры SDH: синхронные транспортные модули (STM), представляющие собой форматы линейных сигналов.
Первые 9 столбцов цикла STM-1 занимают служебные сигналы: секционный заголовок (SOH), который состоит из заголовка регенерационной секции RSOH (первые три ряда) и заголовка ...
Раздел: Рефераты по физике
Тип: курсовая работа Просмотров: 5008 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Цифровая первичная сеть - принципы построения и тенденции развития
Министерство РФ по связи и информатизации Уральский Государственный Технический Университет - УПИ Кафедра "ТиСС" Отчет по производственной практике на ...
Затем происходит процедура мультиплексирования блоков нагрузки в группы блоков нагрузки (TUG) различного уровня вплоть до формирования виртуального контейнера верхнего уровня VC-4 ...
Байт Н4 является указателем и используется при организации сверхциклов SDH, например, он указывает на номер цикла VC-1, VC-2 в сверхцикле TU-1, TU-2. Этот байт также используется в ...
Раздел: Рефераты по радиоэлектронике
Тип: реферат Просмотров: 5021 Комментариев: 3 Похожие работы
Оценило: 3 человек Средний балл: 4 Оценка: неизвестно     Скачать
Синхронизация SDH сетей
Министерство РФ по связи и информатизации Уральский Государственный Технический Университет - УПИ Кафедра "ТиСС" Отчет по производственной практике на ...
Полезные нагрузки могут быть упакованы в SDH несколькими способами, как показано на рисунке 4. Сигналы DS1 или E1 сначала упаковываются в виртуальный контейнер (VC-11, VC-12 ...
Сигналы DS1 и E1 могут размещаться одним из четырех методов: асинхронное размещение, плавающее байт-синхронное размещение, фиксированное байт-синхронное размещение и бит синхронное ...
Раздел: Рефераты по радиоэлектронике
Тип: реферат Просмотров: 2836 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать
Разработка системы управления технологическим сегментом сети
Введение Связь - один из наиболее быстро развивающихся элементов инфраструктуры общества. Телекоммуникационные технологии как самостоятельное понятие ...
Мультиплексор SMS-600V группирует трибутарные сигналы 2,048 Мбит/с, 34,368 Мбит/с, 139,264 Мбит/с, и синхронного сигнала STM-1 в агрегатные синхронные сигналы STM-1 (155,520 Мбит/с ...
В сигнале STM-1 организованы два канала передачи данных, содержащие байты D1-D3 заголовка регенерационной секции для канала 192 кбит/с и байты D4-D12 заголовка мультиплексной ...
Раздел: Рефераты по коммуникации и связи
Тип: дипломная работа Просмотров: 7024 Комментариев: 3 Похожие работы
Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать
Разработка систем передачи информации нового поколения
Содержание Введение 1. Основы технологии DWDM 1.1 Устройства волнового уплотнения DWDM 1.2 Модель взаимодействия DWDM с транспортными технологиями 1.3 ...
В отличие от систем SDH транспортируемый сигнал не упаковывается в контейнеры и не подвергается обработке в соответствии со структурой мультиплексирования SDH для формирования ...
Каждая оптическая несущая может модулироваться в настоящее время входным сигналом с выхода мультиплексора SDH SL16 уровня STM-16 (2,5 ГГц) компании Siemens, а в перспективе может ...
Раздел: Рефераты по коммуникации и связи
Тип: дипломная работа Просмотров: 3692 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Цифровые системы управления связью
1. Эталонная модель взаимодействия открытых систем 1.1. Общие положения Эталонная модель OSI стала основной архитектурной моделью для систем передачи ...
В итоге синхронный транспортный модуль STM-1 образуется добавлением к группе административных блоков AUG секционного заголовка SOH, который состоит из заголовков мультиплексной ...
В качестве информационной нагрузки для STM-1 может выступать, например, виртуальный контейнер VC-4. Ему соответствует таблица 9 х 261.
Раздел: Рефераты по коммуникации и связи
Тип: реферат Просмотров: 2540 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Техническая диагностика средств вычислительной техники
ГОУ СПО Астраханский колледж вычислительной техники М.В. Васильев преподаватель специальных дисциплин Астраханского колледжа вычислительной техники ...
READY (готов) - синхронный сигнал, указывающий, что текущий ЦИКЛ ШИНЫ завершен, байты, определяемые сигналами /ВЕ0-/ВЕ3, /BS16, приняты или переданы.
Для более подробной локализации неисправностей системной шины можно зациклить начальные секции POST-программы и просматривать осциллографом адресные сигналы, сигналы передачи ...
Раздел: Рефераты по информатике, программированию
Тип: учебное пособие Просмотров: 8252 Комментариев: 3 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Реконструкция волоконно-оптической линии связи
Содержание Приложение 3 Введение 4 Обоснование реконструкции магистральной ВОЛС 6 Глава 1. Основные принципы цифровой системы передачи STM-64 7 1.1 ...
Линейные сигналы SDH организованы в так называемые синхронные транспортные модули STM (Synchronous Transport Module) (Табл.
Если в качестве физического канала выступает оптическое излучение - оптическая несущая, то она модулируется по интенсивности групповым информационным сигналом, спектр которого ...
Раздел: Рефераты по коммуникации и связи
Тип: реферат Просмотров: 10508 Комментариев: 3 Похожие работы
Оценило: 3 человек Средний балл: 4.7 Оценка: неизвестно     Скачать

Все работы, похожие на Реферат: Общие положения SDH и PDH (431)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150295)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru