Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Проблемы обучения информатики в школе

Название: Проблемы обучения информатики в школе
Раздел: Рефераты по педагогике
Тип: реферат Добавлен 03:13:34 25 июля 2005 Похожие работы
Просмотров: 1350 Комментариев: 2 Оценило: 2 человек Средний балл: 2 Оценка: неизвестно     Скачать

ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ

ФИЗИКО – МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

Реферат

Проблемы информатики в школе

Реферат написан

студентом 3 курса

Ереминым Д.С.

Вологда 1999 год.


План:

I. Информатика в наше время.

1. Быстро развивающаяся наука – информатика.

2. Школьный курс информатики.

3. Применение человеком компьютера как инструмента.

II. Основные проблемы информатики в школе.

1. Кризис в развитии информатики.

2. Проблемы компьютеризации обучения.

III. Содержание компьютерного обучения.

I. В наше время повсеместного распространения электронных вычислительных машин (ЭВМ) человеческие знания о природе информацииприобретают общекультурную ценность. Этим объясняется интересисследователей и практиков всего мира к относительно молодой ибыстро развивающейся научной дисциплине - информатике.

На сегодняшний день информатика выделилась в фундаментальнуюнауку об информационно - логических моделях, и она не может бытьсведена к другим наукам, даже к математике, очень близкой по изучаемым вопросам. Объектом изучения информатики являются структураинформации и методы ее обработки. Появились различия между информатикой как наукой с собственной предметной областью и информационными технологиями.

В последние годы школьный курс "Основы информатики и вычислительной техники" вышел на качественно новый этап своего развития. Более-менее унифицировался набор школьной вычислительной техники. Самое главное то, что изменился взгляд на то, что понималось под компьютерной грамотностью. Десять лет назад, в начале внедрения информатики в школы, под компьютерной грамотностью понималось умение программировать. Сейчас уже практически всеми осознано, что школьная информатика не должна быть курсом программирования. Большая часть пользователей современных персональных компьютеров (ПК) не программирует и не нуждается в этом. Сегодня созданы обширные программные средства компьютерных информационных технологий (КИТ), позволяющих работать с ЭВМ непрограммирующему пользователю. Поэтому минимальным уровнем компьютерной грамотности является овладение средствами компьютерных информационных технологий.

Однако ошибочно было бы ориентировать курс основы информатики и вычислительной техники только на практическое освоение работы с текстовыми редакторами, электронными таблицами, базами данных и пр. Тогда информатика быстро бы потеряла значение как самостоятельная учебная дисциплина.

Изучение основы информатики и вычислительной техники в школе должно преследовать две цели: общеобразовательную и прагматическую. Общеобразовательная цель заключается в освоении учащимся фундаментальных понятий современной информатики. Прагматическая - в получении практических навыков с аппаратными и программными средствами современных ЭВМ. Курс школьной информатики содержательно и методически должен быть построен так, чтобы обе задачи - общеобразовательная и прагматическая - решались параллельно.

Информатика как образовательная дисциплина быстро развивается. Если 3 - 4 года назад базовый курс информатики состоял из изучения основ алгоритмизации и программирования, основ устройства и применения вычислительной техники, то сегодня целью курс информатики в школе является повышение эффективности применения человеком компьютера как инструмента. Компьютерная грамотность определяется не только умением программировать, а, в основном, умением использовать готовые программные продукты, рассчитанные на пользовательский уровень. Эта тенденция появилась благодаря широкому рассмотрению "мягких" продуктов, ориентированных на неподготовленных пользователей. Разработка таких программно - информационных средств является весьма дорогостоящим делом в силу его высокой наукоемкости и необходимости совместной работы высококвалифицированных специалистов: психологов, компьютерных дизайнеров, программистов. Однако она окупает себя благодаря тому, что доступ к компьютеру сегодня может получить практически каждый человек даже без специальной подготовки.

II. В последние 3-4 года в развитии информатики как учебной дисциплины наблюдается кризис, вызванный тем, что:

- задача 1-го этапа введения школьного предмета информатика восновном выполнена;

- все школьники знакомятся с основными компьютерными понятиями и элементами программирования. Пока решалась эта задача, передний край научной и практической информатики ушел далеко вперед, и стало неясно, в каком направлении двигаться дальше;

- исчерпаны возможности учителей информатики, как правило, либо не являющимися профессиональными педагогами, либо не являющимися профессиональными информатиками и прошедшими лишь краткосрочную подготовку в институте усовершенствования учителей;

- отсутствуют взвешенные, реалистичные учебники;

- из-за различия условий для преподавания информатики в различных школах (разнообразия типов средств вычислительной техники) и появившейся у школ относительной свободы в выборе профилей классов, учебных планов и образовательных программ появился значительный разброс в содержании обучения информатики. В высших учебных заведениях подготовка по информатике, как правило, не претерпела существенных изменений и имеет ориентацию на вычислительные приложения ЭВМ, не учитывает ведущуюся уже 10 лет подготовку школьников по информатике.

В существенной степени проявилось и изменение парадигмы исследований в области информационных технологий и их приложении на практике. В начальный период своего существования школьная информатика питалась в основном идеями из практики использования информационных технологий в научных исследованиях, технической кибернетике, схемотехнике СБИС, АСУ и САПР. В связи с кризисом финансирования научных учреждений и исследований, фактической остановкой наукоемких производств и их перепрофилированием общая научная ориентация курса информатики утратила актуальность. Значительно снизилась исходная мотивация школьников к изучению научно-ориентированных предметов и успеваемость по ним. Явно проявляется социальный запрос, направленный на бизнес-ориентированные применения информационных технологий, пользовательские навыки использования персональных компьютеров для подготовки и печати документов, бухгалтерских расчетов и т.д. Однако, большинство общеобразовательных учебных заведений не готово к реализации этого запроса в силу отсутствия соответствующей учебной вычислительной техники и недостаточной подготовке учителей информатики.

Серьезной проблемой учебной информатики является технологический крен в определении стратегии развития этой дисциплины. Неосознанная ориентация многих специалистов на примат средств обучения перед его целями, то есть на аппаратное и программное обеспечение обучения заставляет задавать вопросы типа отпадает ли надобность в обучении информатике по мере совершенствования интерфейсов программ, легкости и удобства их освоения? [Уваров А. Информатика в школе: вчера, сегодня, завтра //Информатика и образование, 1990, №4, с. 3]. При такой постановке вопроса происходит подмена задачи формирования информационной деятельности в условиях информационной среды простым знакомством с программными средствами.

Распространенной ошибкой при обосновании целей обучения информатике является отрыв учебного предмета от общественной практики, выпячивание его уникальности [Информатику необходимо сохранить //Информатика и образование, 1990, №5, с. 3].

Компьютер является не просто техническим устройством, он предполагает соответствующее программное обеспече­ние. Решение указанной задачи связано с преодолением трудностей, обусловленных тем, что одну часть задачи — конструирование и производство ЭВМ — выполняет ин­женер, а другую — педагог, который должен найти разум­ное дидактическое обоснование логики работы вычисли­тельной машины и логики развертывания живой челове­ческой деятельности учения. В настоящее время после­днее приносится пока что в жертву логике машинной; ведь для того чтобы успешно работать с компьютером, нужно, как отмечают сторонники всеобщей компьюте­ризации, обладать алгоритмическим мышлением.

Другая трудность состоит в том, что средство явля­ется лишь одним из равноправных компонентов дидак­тической системы наряду с другими ее звеньями: целя­ми, содержанием, формами, методами, деятельностью педагога и деятельностью учащегося. Все эти звенья вза­имосвязаны, и изменение в одном из них обусловливает изменения во всех других. Как новое содержание требу­ет новых форм его организации, так и новое средство предполагает переориентацию всех других компонентов дидактической системы. Поэтому установка в школьном классе или вузовской аудитории вычислительной машины или дисплея есть не окончание компьютеризации, а ее начало — начало системной перестройки всей техноло­гии обучения.

Преобразуется прежде всего деятельность субъектов образования - учителя и ученика, преподавателя и сту­дента. Им приходится строить принципиально новые от­ношения, осваивать новые формы деятельности в связи с изменением средств учебной работы и специфической перестройкой ее содержания. И именно в этом, а не в овладении компьютерной грамотностью учителями и уче­никами или насыщенности классов обучающей техникой, состоит основная трудность компьютеризации образова­ния.

Выделяются три основные формы, в которых может использоваться компьютер при выполнении им обучаю­щих функций: а) машина как тренажер; б) машина как репетитор, выполняющий определенные функции за преподавателя, причем машина может выполнять их лучше, чем человек; в) машина как устройство, моде­лирующее определенные предметные ситуации (имита­ционное моделирование). Возможности компьютера широ­ко используются и в такой неспецифической по отноше­нию к обучению функции, как проведение громоздких вычислений или в режиме калькулятора.

Тренировочные системы наиболее целесообразно при­менять для выработки и закрепления умений и навы­ков. Здесь используются программы контрольно-трени­ровочного типа: шаг за шагом учащийся получает дози­рованную информацию, которая наводит на правильный ответ при последующем предъявлении задания. Такие программы можно отнести к типу, присущему традици­онному программированному обучению. Задача учаще­гося состоит в том, чтобы воспринимать команды и отве­чать на них, повторять и заучивать препарированный для целей такого обучения готовый материал. При исполь­зовании в таком режиме компьютера отмечается интел­лектуальная пассивность учащихся.

Отличие репетиторских систем определяется тем, что при четком определении целей, задач и содержания обу­чения используются управляющие воздействия, идущие как от программы, так и от самого учащегося. "Для обу­чающих систем такой обмен информацией получил название диалога"'. Таким образом, репетиторские системы предусматривают своего рода диалог обучающегося с ЭВМ в реальном масштабе времени. Обратная связь осуществ­ляется не только при контроле, но и в процессе усвоения знаний, что дает учащемуся объективные данные о ходе этого процесса. По сути дела репетиторские системы ос­нованы на той же идеологии программированного обуче­ния (разветвленные программы), но усиленного возмож­ностями диалога с ЭВМ.

Нужно подчеркнуть отличие такого "диалога" от диалога как способа общения между людьми. Диалог — это развитие темы, позиции, точки зрения совместными усилиями двух и более человек. Траектория этого совме­стного обмена мыслями задается теми смыслами, кото­рые порождаются в ходе самого диалога.

Очевидно, что "диалог" с машиной таковым принци­пиально не является. В машинной программе заранее задаются те ветви программы, по которым движется про­цесс, инициированный пользователем ЭВМ. Если уча­щийся попадет не на ту ветвь, машина выдаст "реплику" о том, что он попал не туда, куда предусмотрено логикой программы, и что нужно, следовательно, повторить по­пытку или начать с другого хода. Принципиально то же самое происходит, когда мы неправильно набираем номер телефона, и абонент отвечает: "Ошиблись номером" либо просто бросает трубку. Кстати, по этой же причине ин­дивидуализация обучения реализуется лишь постольку, поскольку в машине заложена разветвленная программа. По идее должно быть наоборот: ввиду уникальности каж­дого человека в обучающей машине должны возникать индивидуальные программы. Но это не в возможностях компьютера, во всяком случае в настоящее время.

Конечно, программист поступает правильно, предус­матривая систему реплик машины, выдаваемых в опре­деленных местах программы и имитирующих ситуации общения. Но поскольку нет реального диалога, то нет и общения, есть только иллюзия того и другого. Диалога с машиной, а точнее, с массивом формализованной инфор­мации, принципиально быть не может. С дидактической точки зрения "диалоговый режим" сводится лишь к варьированию либо последовательности, либо объема выдаваемой информации. Этим и исчерпываются возмож­ности оперирования готовой, фиксированной в "памяти" машинной информации. М.В.Иванов пишет:

Диалог - это реализованное в педагогическом обще­нии диалектическое противоречие предмета, а противо­речие даже самая современная машина освоить никак не может, она к этому принципиально не приспособлена. Введение противоречивой информации она оценивает "двойкой".

Это означает, что компьютер, выступая в функции средства реализации целей человека, не подменяет про­цессов творчества, не отбирает его у учащихся. Это спра­ведливо и для тех случаев, когда ЭВМ используется для учебного имитационного моделирования, задающего режим "интеллектуальной игры", хотя, бесспорно, что именно в этой функции применение компьютера явля­ется наиболее перспективным. С его помощью создается такая обучающая среда, которая способствует активному мышлению учащихся.

Использование машинных моделей тех или иных пред­метных ситуаций раскрывает недоступные ранее свойства этих ситуаций, расширяет зону поиска вариантов реше­ний и их уровень. Наблюдается увеличение числа порож­даемых пользователем целей, отмечается оригинальность их формулировки. В процессе работы перестраиваются механизмы регуляции и контроля деятельности, транс­формируется ее мотивация. Их характер определяется тем, насколько программисту удается заложить в обу­чающую программу возможности индивидуализации работы учащегося, учесть закономерности учебной деятель­ности.

Индивидуализацию называют одним из преимуществ компьютерного обучения. И это действительно так, хотя индивидуализация ограничена возможностями конкрет­ной обучающей программы и требует больших затрат времени и сил программиста. Однако тот идеал индиви­дуализации, который связывают с широким внедрением персональных компьютеров, имеет и свою оборотную сто­рону. Индивидуализация свертывает и так дефицитное в учебном процессе диалогическое общение и предлагает его суррогат в виде "диалога" с ЭВМ.

В самом деле, активный в речевом плане ребенок, по­ступив в школу, в основном слушает учителя, занимает "ответную позицию" и говорит на уроках с особого разре­шения учителя, когда его "вызовут к доске". Подсчита­но, что за полный учебный год ученик имеет возмож­ность говорить считанные десятки минут — в основном он молча воспринимает информацию. Средство формиро­вания мысли — речь - оказывается фактически выклю­ченным, а для тех, кто стал студентом, это происходит и в высшей школе. Обучающиеся не имеют достаточной практики диалогического общения на языке изучаемых наук, а без этого, как показывают психологические ис­следования, самостоятельное мышление не развивается.

Если пойти по пути всеобщей индивидуализации обу­чения с помощью персональных компьютеров, не забо­тясь о преимущественном развитии коллективных по своей форме и сути учебных занятий с богатыми возмож­ностями диалогического общения в взаимодействия, мож­но упустить саму возможность формирования мышления учащихся. Реальны и опасность свертывания социальных контактов, и индивидуализм в производственной и об­щественной жизни. С этими явлениями в избытке встре­чаются в странах, широко внедряющих компьютеры во все сферы жизнедеятельности.

Нельзя безоглядно ориентироваться на пути внедре­ния ЭВМ в тех странах, где исходят из принципиально иных представлений о психическом развитии человека, чем те, которые разработаны в современной психолого-педагогической науке. Возникает серьезная многоас­пектная проблема выбора стратегии внедрения компью­тера в обучение, которая позволила бы использовать все его преимущества и избежать потерь, ибо они неизбежно отрицательно скажутся на качестве учебно-воспитатель­ного процесса, который не только обогащает человека знаниями и практическими умениями, но и формирует его нравственный облик.

Нужно учитывать, что широкая практика обучения в нашей стране в общеобразовательной и высшей школе во многом продолжает основываться на теоретических пред­ставлениях объяснительно-иллюстративного подхода, в котором схема обучения сводится к трем основным звень­ям: изложение материала, закрепление и контроль. При

информационно-кибернетическом подходе, на котором и основывается компьютерная технология, суть дела прин­ципиально не меняется. Обучение выступает как предель­но индивидуализированный процесс работы школьника и студента со знакомой информацией, представленной на экране дисплея. Очевидно, что с помощью этих теоре­тических схем невозможно описать такую педагогичес­кую реальность сегодняшнего дня, как, например, про­блемная лекция, проблемный урок, семинар-дискуссия, деловая игра или научно-исследовательская работа.

В большинстве случаев в школах пытаются идти по пути наименьшего сопротивления: переводят содержание учебников и многообразные типы задач на язык програм­мирования и закладывают их в машину. Но если мате­риал был непонятным на предметном, например на хими­ческом, языке, он не станет более ясным на языке ком­пьютера, скорее наоборот.

Авторы программы в подобных случаях пытаются активизировать работу учащихся с учебным материалом за счет огромных возможностей компьютера по перера­ботке информации, увеличению ее объема и скорости передачи. Конечно, возможности человека по переработ­ке информации далеко не исчерпаны. Однако увеличи­вать информационную нагрузку можно лишь при усло­вии, если сам учащийся видит личностный смысл ее по­лучения. А это бывает тогда, когда он понимает матери­ал и связывает информацию с практическим действием. В этом случае информация превращается в знание.

Знания — это адекватное отражение в сознании чело­века объективной действительности, обеспечивающее ему возможности разумного, компетентного действия. Одна­ко в обучении знание является результатом работы чело­века не с реальными объектами, а с их "заместителями" — знаковыми системами, которые составляют содержание учебных предметов, учебную информацию. Отражение действительности осуществляется через усвоение таких систем, и в этом преимущество всякого обучения. Его недостаток состоит в том, что эти знаковые системы как бы закрывают человеку возможности практического от­ношения к действительности, и по этой причине мно­гие обучающиеся не умеют применять знания на прак­тике.

Опасность отрыва от реальности, неадекватного отра­жения действительности при компьютерном обучении возрастает, поскольку содержательная информация, пред­ставленная в учебнике на том или ином предметном языке (физика,химия, биология и т.п.), должна быть выражена еще на одном искусственном языке, языке программиро­вания. Происходит как бы замещение замещения, что умножает возможность получения обучающимися фор­мальных знаний, которые не приближают к практике, а, наоборот, отдаляют от нее.

Вывод, который делают исследователи в тех странах, где накоплен опыт компьютеризации, прежде всего в развитых странах Запада, состоит в том, что реальные достижения в этой области не дают оснований полагать, что якобы применение ЭВМ кардинально изменит тради­ционную систему обучения к лучшему. Нельзя просто встроить компьютер в привычный учебный процесс и надеяться, что он сделает революцию в образовании. Нужно менять саму концепцию учебного процесса, в ко­торый компьютер органично вписывался бы как новое, мощное средство.

В зарубежной литературе отмечается, что попытки внедрения компьютера основываются на концепции об­разования, основной целью которого является накопле­ние знаний, умений и навыков, которые необходимы для выполнения профессиональных функций в условиях ин­дустриального производства, и старая концепция обра­зования уже не соответствует его требованиям.

Условия, создаваемые с помощью компьютера, должны способствовать формированию мышления обучающегося, ориентировать его на поиск системных связей и законо­мерностей. Компьютер, как подчеркивает П.Нортон, явля­ется мощным средством оказания помощи в осмыслении людьми многих явлений и закономерностей, однако нуж­но помнить, что он неизбежно порабощает ум, который пользуется лишь набором заученных фактов и навыков.

Усвоение знаний об ЭВМ и ее возможностях, владе­ние языком программирования, умение программировать являются лишь первыми шагами на пути реализации возможностей компьютера. Действительно эффективным можно считать только такое компьютерное обучение, в котором обеспечиваются возможности для формирования и развития мышления учащихся. При этом нужно ис­следовать еще закономерности самого компьютерного мышления. Ясно только то, что мышление, формируе­мое и действующее с помощью такого средства, как ком-

пьютер, в чем-то значимо отличается от мышления с помощью, например, привычного печатного текстаилитехнического средства.

Переосмыслению подвергается не только понятие мыш­ления, но и представление о других психических функ­циях: восприятии, памяти, эмоциях и т.д. Высказыва­ется, например, мнение, что новые технологии обучения с помощью ЭВМ существенно меняют смысл глагола "знать". Понятие "накапливать информацию в памяти" трансформируется в "процесс получения доступа к ин­формации". Можно не соглашаться с такими трактовка­ми, но, несомненно, что они навеяны попытками ввести новую, компьютерную технологию обучения и-что пси­ходоги а педагоги должны исследовать особенности разви­тия деятельности и психических функций человека в этих условиях. Ясно, что всю проблему нельзя свести к фор­мированию алгоритмического мышления с помощью ком­пьютера.

III. Проблемы компьютерного обучения, о чем говорилось выше, не сво­дятся к массовому производству компьютеров и встраи­ванию их в существующий учебный процесс. Изменение средства обучения, как, впрочем, и изменения в любом звене дидактической системы, неизбежно приводят к перестройке всей этой системы. Использование вычис­лительной техники расширяет возможности человека, однако оно является лишь инструментом, орудием реше­ния задач, и его применение не должно превращаться в самоцель, моду или формальное мероприятие.

Сама возможность компьютеризации учебного процесса возникает тогда, когда выполняемые человеком функции могут быть формализуемы и адекватно воспроизведены с помощью технических средств. Поэтому прежде, чем приступать к проектированию учебного процесса, препо­даватель должен определить соотношение между автома­тизированной и неавтоматизированной его частями. По некоторым литературным источникам автоматизирован­ный режим по объему учебного материала может дости­гать 30 % содержания (Савельев А.Я. Проблемы автоматизации обучения //Вопр. психо­логии. 1986. N 1). Эти данные могут помочь выбрать последовательность компьютеризации учебных предметов. Естественно, что в первую очередь она затронет те из них, которые используют строгий логико-математи­ческий аппарат, содержание которых поддается форма­лизации. Неформализованные компоненты нужно развер­тывать каким-то другим, неалгоритмическим образом, что требует от преподавателя, учителя соответствующего пе­дагогического мастерства.

При проектировании содержания учебной деятельно­сти нужно иметь в виду, что в нее входят знания из пред­метной области, а также те знания, которые необходимы для усвоения содержания учебного предмета, включая знания о самой предметной деятельности. (МашбицЕ.И. Психологические основы управления учебной деятельностью. Киев, 1987 г.). При этом, чем больший фрагмент обучения охватывает обучающая про­грамма, тем большее значение приобретает этот второй компонент содержания, здесь могут пригодиться элементы математики, формальной логики, эвристические средства решения учебных задач.

В соответствии с концепцией знаково-контекстного обучения (Вербицкий А . А. Концепция знаково-контекстного обучения в вузе // Вопр. психологии. 1987. N 5) теория усваивается в контексте практическо­го действия и, наоборот, практические действия имеют своей ориентировочной основой теорию. Такой подход положен в основу опыта компьютерного обучения в той части, которая касается химических расчетных задач. Так, при традиционном подходе учащиеся или слушате­ли подготовительного отделения химико-инженерного вуза должны научиться решать множество подтипов задач путем отработки соответствующих способов решения. Простой перевод этой процедуры на компьютер немно­гим улучшает дело. Системно-контекстное же разверты­вание содержания химической науки задает разумную логику, связывающую все возможные компьютерные программы решения этих задач. Усваивая логику такого развертывания и возможности его перевода на язык про­граммирования, обучающийся усваивает этот язык в кон­тексте изучения содержания учебного предмета. (Агапова О.И., Швец ВМ., Вербицкий А.А. Реализуется системно-контекстный подход // Вести, высш. школы. 1987. N 12)

В процессе работы обучающиеся не просто подставля­ют недостающие данные в формулу, введенную преподавателем, а проделывают осознанную работу по теорети­ческому анализу химического материала. В результате они получают данные, преобразование которых по извес­тной процедуре составляет решение задачи. Теория и практика выступают как две стороны одного и того же процесса решения, а сама задача оказывается диалекти­чески противоречивым явлением. С одной стороны, она является тем, "обличье" чего принимает теория, а с другой — объектом практического применения этой теории. Про­тиворечие снимается в процессе решения задачи, ориен­тировочной основой которой является теория. Существу­ет и другой вариант, при котором обучающийся самосто­ятельно составляет расчетные химические задачи по за­данному преподавателем алгоритму действий. Эта про­цедура является не чем иным, как существенной частью программы для ЭВМ. В контексте решения содержа­тельных химических задач обучающиеся усваивают и логику составления программ для компьютера. Остается только записать эту логику на соответствующем машин­ном языке.

Составляя задачи, обучающиеся овладевают первым этапом программирования — алгоритмизацией содержа­ния химии. На втором этапе осваиваются такие атри­буты программирования, как запись чисел, операторы, правила построения программ и т.п. Таким образом, слу­шатели одновременно используют два языка: содержа­тельный язык химической науки и формальный язык программирования, один в контексте другого. Реализу­ется своего рода ресурсосберегающая технология, отпа­дает необходимость введения дополнительного курса про­граммирования.

Рассмотренный пример призван иллюстрировать ту мысль, что компьютеризация обучения не означает про­стого введения нового средства в уже сложившийся учеб­ный процесс. Необходимо проектирование нового учеб­ного процесса на основе современной психолого-педагогической теории. А это задача посложнее, чем подго­товка обучающих программ по существующим учеб­ным предметам. Судьба компьютеризации в конечном счете будет зависеть от педагогически и психологичес­ки обоснованной перестройки всего учебно-воспитатель­ного процесса.

Литература :

1. Агапова О.И., Швец ВМ., Вербицкий А.А. Реализуется системно-контекстный подход // Вести, высш. школы. 1987. N 12.

2. Вербицкий А .А. Концепция знаково-контекстного обучения в вузе // Вопр. психологии. 1987. N 5.

3. Иванов МЈ. Пути совершенствования методов преподавания в высшей школе //Совр. высш. школа. 1982. N 3.

4. Информатику необходимо сохранить //Информатика и образование, 1990, №5.

5. МашбицЕ.И. Психологические основы управления учебной деятельностью. Киев, 1987 г.

6. Психолого-педагогические основы использования ЭВМ в вузовском обучении / Под ред. А.В.Петровского, Н.Н.Нечаева. М„ 1987.

7. Савельев А.Я. Проблемы автоматизации обучения //Вопр. психо­логии. 1986. N 1, 2.

8. Уваров А. Информатика в школе: вчера, сегодня, завтра //Информатика и образование, 1990, №4.

9. Харламов И.Ф. Педагогика: Учеб. Пособие. – М.: Юристъ, 1997. – 512 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений21:46:04 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
12:09:41 24 ноября 2015

Работы, похожие на Реферат: Проблемы обучения информатики в школе

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151334)
Комментарии (1844)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru