Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364145
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21694)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3462)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20644)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Метод Крамера

Название: Метод Крамера
Раздел: Рефераты по математике
Тип: реферат Добавлен 06:15:19 03 октября 2005 Похожие работы
Просмотров: 3254 Комментариев: 2 Оценило: 1 человек Средний балл: 2 Оценка: неизвестно     Скачать

Министерство рыбного хозяйства

Владивостокский морской колледж

ТЕМА: “ Системы 2-х , 3-х линейных уравнений.

Правило Крамера. ”

г. Владивосток

ОГЛАВЛЕНИЕ.

1.Краткая теория .

2. Методические рекомендации по выполнению заданий.

3.Примеры выполнения заданий.

4.Варианты заданий.

5.Список литературы.

1. КРАТКАЯ ТЕОРИЯ .

________________________________

Пусть дана система линейных уравнений

(1)

Коэффициенты a11 ,12 ,..., a1n , ... , an1 , b2 , ... , bn считаются заданными .

Вектор -строка í x1 , x2 , ... , xn ý - называется решением системы (1), если при подстановке этих чисел вместо переменных все уравнения системы (1) обращаются в верное равенство.

Определитель n-го порядка D = ç A ê = ç a ij ç , составленный из коэффициентов при неизвестных , называется определителем системы (1). В зависимости от определителя системы (1) различают следующие случаи.

a). Если D ¹ 0 , то система (1) имеет единственное решение, которое может быть найдено по формулам Крамера : x1 =, где

определитель n-го порядка D i ( i=1,2,...,n) получается из определителя системы путем замены i-го столбца свободными членами b1 , b2 ,..., bn .

б). Если D = 0 , то система (1) либо имеет бесконечное множество решений , либо несовместна ,т.е. решений нет.

2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

__________________________________________

1. Рассмотрим систему 3-х линейных уравнений с тремя неизвестными.

(2).

1. В данной системе составим определитель и вычислим.

2. Составить и вычислить следующие определители :

.

3. Воспользоваться формулами Крамера.

3. ПРИМЕРЫ.

_______________

1. .

.

Проверка:

Ответ: ( 3 ; -1 ).

2.

Проверка:

Ответ: x=0,5 ; y=2 ; z=1,5 .

4. ВАРИАНТЫ ЗАДАНИЙ.

___________________________

ВАРИАНТ 1.

Решить системы:

ВАРИАНТ 2.

Решить системы:

ВАРИАНТ 3.

Решить системы:

ВАРИАНТ 4.

Решить системы:

ВАРИАНТ 5.

Решить системы:

ВАРИАНТ 6.

Решить системы:

ВАРИАНТ 7.

Решить системы:

ВАРИАНТ 8.

Решить системы:

1. Г.И. КРУЧКОВИЧ.

“Сборник задач по курсу высшей математике.”

М. “Высшая школа”, 1973 год.

2. В.С. ШИПАЧЕВ.

“Высшая математика.”

М. “Высшая школа”, 1985 год.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений22:22:47 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:53:41 24 ноября 2015

Работы, похожие на Реферат: Метод Крамера

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(163690)
Комментарии (1936)
Copyright © 2005-2017 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru