Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Шпаргалка: Лекции по матану (III семестр) переходящие в шпоры

Название: Лекции по матану (III семестр) переходящие в шпоры
Раздел: Рефераты по математике
Тип: шпаргалка Добавлен 16:24:01 29 июля 2005 Похожие работы
Просмотров: 3140 Комментариев: 2 Оценило: 5 человек Средний балл: 4 Оценка: неизвестно     Скачать

№1

1 Двойной интеграл

Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией Г, являющейся замкнутой непрерывной кривой. z = l(P) = f(x,y), P= (x,y) ÎD – произвольные ф-ции определенные и ограниченные на D. Диаметром области D наз. наибольшее расстояние между граничными точками. Область D разбивается на n частых областей D1…Dn конечным числом произв. кривых. Если S – площадь D, то DSi – площадь каждой частной области. Наибольший из диаметров областей обозн l. В каждой частной области Di возьмем произв. точку Pi (xi , Di) ÎDi, наз. промежуточной. Если диаметр разбиения Dl- 0 , то число n областей Di-¥. Вычислим зн-ие ф-ции в промежуточных точках и составим сумму:I = f(xi, Di)DSi (1), наз. интегральной суммой ф-ции. Ф-ция f(x,y) наз. интегрируемой в области D если существует конечный предел интегральной суммы.

Двойным интегралом ф-ии f(x,y) по области D наз. предел интегральной суммы при l- 0. Обозн:

или

2 Понятие числового

ряда и его суммы

Пусть задана бесконечная последовательность чисел u1, u2, u3…

Выражение u1+ u2+ u3…+ un (1) называется числовым рядом, а числа его составляющие- членами ряда.

Сумма конечно числа n первых членов ряда называется n-ной частичной суммой ряда: Sn = u1+..+un

Если сущ. конечный предел: , то его называют суммой ряда и говорят, что ряд сходится, если такого предела не существует, то говорят что ряд расходится и суммы не имеет.

№ 2

1 Условие существования

двойного интеграла

Необходимое, но недостаточное:

Ф-ция f(x,y) интегрируема на замкнутой области D, ограничена на D.

1 достаточный признак существования: если ф-ция f(x,y) непрерывна на замкнутой, огр. области D, то она интегрируема на D.

2 достаточный признак существования: если ф-ция f(x,y) ограничена в замкнутой области D с какой-то границей и непрерывна в ней за исключением отдельных точек и гладки=х прямых в конечном числе где она может иметь разрыв, то она интегрируема на D.

2 Геометрический и

арифметический ряды

Ряд состоящий из членов бесконечной геометрической прогрессии наз. геометрическим: или

а+ а×q +…+a×qn -1

a¹ 0 первый член q – знаменатель. Сумма ряда:

следовательно конечный предел последовательности частных сумм ряда зависит от величины q

Возможны случаи:

1 |q|<1

т. е. ряд схд-ся и его сумма 2 |q|>1 и предел суммы так же равен бесконечности

т. е. ряд расходится.

3 при q = 1 получается ряд: а+а+…+а… Sn = n×a ряд расходится

4 при q¹1 ряд имеет вид: а-а+а … (-1)n -1 aSn=0 при n четном, Sn=a при n нечетном предела частных суммы не существует. ряд расходится.

Рассмотрим ряд из бесконечных членов арифметической прогрессии:u – первый член, d – разность. Сумма ряда

при любых u1 и d одновременно ¹ 0 и ряд всегда расходится.

№3

1 Основные св-ва 2ного интеграла

1. Двойной интеграл по области D = площади этой области.

2. Если область G содержится в Д, а ф-ция ограничена и интегрируема в Д, то она интегрируема и в G.

3. Аддитивное св-во. Если область Д при помощи кривой г разбивают на 2 области Д1 и Д2, не имеющих общих внутренних точек, то:

4. константы выносятся за знак интеграла, а сумму в ф-ции можно представить в виде суммы интегралов:

5. Если ф-ции f и g интегрируемы в Д, то их произведение также интегрируемо в Д. Если g(x,y) ¹ 0 то и f/g интегрируема в Д.

6. Если f(x,y) и g(x,y) интегрируемы в Д и всюду в этой области f(x,y) <= g(x,y), то:

В частности: g(x,y) >=0 то и

7. Оценка абсолютной величины интеграла: если f(x,y) интегрируема в Д, то и |f(x,y)| интегрир. в Д причем

обратное утверждение неверно, итз интегрируемости |f| не следует интегрируемость f.

8. Теорема о среднем значении.

Если ф-ция f(x,y) интегр. в Д., то в этой области найдется такая точка (x, h) Î Д, что:

(2), где S – площадь фигуры Д. Значение f(x, h) опред по ф-ле (2) наз. средним значением ф-ции f по области Д.

2 С-ва сходящихся рядов

Пусть даны два ряда: u1+u2+…un =(1) и v1+v2+…vn = (2)

Произведением ряда (1) на число lÎR наз ряд: lu1+lu2+…lun =(3)

Суммой рядов (1) и (2) наз ряд:

(u1+v1)+(u2+v2)+…(un+vn) = (для разности там только - появица)

Т1 Об общем множителе

Если ряд (1) сходится и его сумма = S, то для любого числа l ряд =l× тоже сходится и его сумма S’ = S×l Если ряд (1) расходится и l¹ 0, то и ряд тоже расходится. Т. е. общий множитель не влияет на расходимости ряда.

Т2 Если ряды (1) и (2) сходятся, а их суммы = соотв S и S’, то и ряд: тоже сходится и если s его сумма, то s = S+S’. Т. е. сходящиеся ряды можно почленно складывать и вычитать. Если ряд (1) сходится, а ряд (2) расходится, то их сумма(или разность) тоже расходится. А вот если оба ряда расходятся. то ихняя сумма (или разность)может как расходится (если un=vn) так и сходиться (если un=¹vn)

Для ряда (1) ряд называется n – ным остатком ряда. Если нный остаток ряда сходится, то его сумму будем обозначать: rn =

Т3 Если ряд сходится, то и любой его остаток сходится, если какой либо остаток ряда сходится, то сходится и сам ряд. Причем полная сумма = частичная сумма ряда Sn + rn

Изменение, а также отбрасывание или добавление конечного числа членов не влияет на сходимость (расходимость) ряда.

№4

1 Сведение

2ного интеграла к повторному

Пусть у1(х), у2(х) непрерывны на отрезке [a, b], у1(х)<= у2(х) на всем отрезке.

D={x,y}: a<=x<=b; y1(x)<=y<=y2(x)

Отрезок [a,b] – проекция Д на ось ох. Для такой области людбая прямая, параллельная оу и проходящая через внутреннюю точку области Д пересекает границу области не более чем в 2 точках. Такая область наз. правильной в направлении оси оу.

Если фция f(x,y) задана на Д и при каждом х Î [a,b] непрерывна на у , на отрезке, [y1(x),y2(x)], то фц-ия F(x) = , наз. интегралом, зависящим от параметра I, а интеграл : , наз повторным интегралом от ф-ции f(x,y) на области Д. Итак, повторный интеграл вычисляется путем последовательного вычисления обычных определенных интегралов сначала по одной., а затем по другой переменной.

2 Необходимый

признак сходимости рядов

Если ряд сходится, то предел его общего члена равен нулю:

Док-во:

Sn=u1+u2+…+un

Sn-1\u1+u2+…+un-1

un=Sn-Sn-1, поэтому:

Сей признак является только необходимым, но не является достаточным., т. е. если предел общегоь члена и равен нулю совершенно необязательно чтобы ряд при этом сходился. Следовательно, вот сие условие при его невыполнении является зато достаточным условием расходимости ряда.

№5

1 Замена переменных в двойном интеграле.

Общий случай криволинейных координат

Пусть существует ф-ция f(x,y) интегр на области Д, можно прямолинейные координаты x, y с помощью формул преобразования перейти к криволинейным: x = x(u,v), y=y(u,v), где эти ф-ции непрерывные вместе с частными производными первого порядка, устанавливают взаимно однозначное и в обе стороны непрерывное соответствие между точками плоской области Д и области Д’ и определитель преобразования, наз. Якобианом не обращается в 0:если это выполняется можно пользоваться ф-лой:

2 Интегральный признак

сходимости ряда. Ряд Дирихле

Т1 Пущай дан рядт (1), члены которого неотрицательны, и не возрастают: u1>=u2>=u3…>=un

Если существует ф-ция f(x) неотрицательная, непрерывная и не возрастающая на [1,+¥] такая, что f(n) = Un, "nÎN, то для сходимости ряда (1) необходимо унд достаточно, чтобы сходился несобственный интеграл:, а для расходимости достаточно и необходимо чтобы сей интеграл наоборот расходился (ВАУ!).

Применим сей признак для исследования ряда Дирихле: Вот он: , aÎR Сей ряд называют обобщенным гармоническим рядом, при a >0 общий член оного un=1/na -0 и убывает поэтому можно воспользоваться интегральным признаком, функцией здеся будет ф-ция f(x)=1/xa (x>=1)сия ф-ция удовлетворяет условиям теоремы 1 поэтому сходимость (расходимости) ряда Дирихле равнозначна сходимости расходимости интеграла:

Возможны три случая:

1 a>1,

Интеграл а потому и ряд сходится.

2 0<a<1,

Интеграл и ряд расходится

3 a=1,

Интеграл и ряд расходится

№ 6

1 Двойной интеграл

в полярных координатах

Переход к полярным координатам частный случай замены переменных.

Луч, проходящий из произв точки О имеет на плоскости полярные координаты A(r, j) где r = |ОA | расстояние от О до А полярный радиус. j = угол между векторами ОА и ОР – полярный угол отсчитываемой от полярной оси против часовой стрелки. всегда 0<=r<=+¥, 0<=j <=2p .

Зависимость между прямоугольными и полярными координатами: x = r×cosj , y = r×sinj .

Якобиан преобразования будет равен:

И формула при переходе примет вид:

2 Признаки сравнения

Т(Признаки сравнения)

Пущай и ряды с неотрицательными членами и для любого n выполняется нер-во:

un<=vn (1)тогда

1 Если ряд vn сходится, то сходится и ряд un

2 если ряд un расходится, то расходится и ряд vn. Т. е. говоря простыми русскими словами для простых русских людей (ну для дураков вроде тебя): Из сходимости ряда с большими членами следует сходимость ряда с меньшими, а из расходимости ряда с меньшими членами следует расходимости ряда с большими и не наоборот!!!

Причем можно требовать, чтобы неравенство (1) выполнялось не для всех номеров n, а начиная с некоторого n0, т. е. для некоторых номеров меньших n0 неравенство (1) может и не выполняться. При применении сего признака сравнения удобно в качестве ряда сравнения брать ряд Дирихле или геометрический ряд, с которыми и так уже все ясно.

Т3 Засекреченная

Если сущ вышеописанные неотр. ряды, то если сущ предел:

(0<k<+¥) тада оба эти ряда сходятся.

№7

1 Вычисление

площади плоской области

с помощью 2ного интеграла

Если Д правильная в направлении оу a<=x<=b, y1(x)<=y<=y2(x), то

Если Д огр линиями в полярных координатах, то

2 Признаки Даламбера и Коши

Т(Признак Далембера)

Пущай для ряда un с положит членами существует предел:

, то

1 Если k<1, то ряд сходится

2 Если k>1 ряд расходится

Т(Признак Коши)

Пусть для того же самого ряда (т. е. положительного) существует предел:, тогда

1 Если k<1, то ряд сходится

2 Если k>1 ряд расходится

А вот если эти все пределы по Коши и дедушке Даламберу равны 1, то о сходимости или расходимости ряда ничего сказать низзя. Вот низзя и все тут. Вот.

№8

1 Вычисление объема

с помощью 2ного интеграла

Рассматривая в пространстве тело Р, огр снизу плоскостью оху, сверху z = f(x,y), кот проектируется в Д, сбоку границей области Д, называемое криволинейным цилиндром. Объем этого тела вычисляют по формуле:

если f(x,y)<=0 в Д тор тело находится под плоскостью оху. Его объем равен объему цилиндрического тела. огр сверху ф-цией:

z = |f(x,y)|>=0.

тогда

если в Д ф-ция меняет знак, то область разбивается на 2. Область Д1, f(x,y)>=0; Д2, f(x,y)<=0, тогда:

2 Знакочередующиеся ряды. Признак Лейбница.

Ряд называется знакочередующимся если каждая пара соседних членов имеет разные знаки (один ♀, другой ♂), если считать каждый член сего ряда положительным то его можно записать в виде:

Т (Признак Лейбница)

Если для знакочередующегося ряды выполняются условия:

1) u1>=u2>=u3…>=un>=un+1…

2)

то ряд сходится, а его сумма и остаток rn удовлетворяют неравенствам: 0<=S<=un и |rn |<=un+1

Ряд удовлетворяющий условиям теоремы наз. рядом Лейбница.

Если условие чередования знаков выполняется не с первого члена, а с какого-нибудь исчо, то при существовании равного 0 предела ряд будет также сходится.

№9

1 Вычисление

площади поверхности

с помощью двойного интеграла.

Пусть дана кривая поверхность Р, заданная ур-ями z = f(x,y) и имеющая границу Г, проецирующуюся на плоскость оху в область Д. Если в этой области ф-ция f×(x,y) непрерывна и имеет непрерывные частные производные: тогда площадь поверхности Р вычисляется:

для ф-ций вида x = m (y,z) или y = j(x,z) там будут тока букыв в частных производных менятца ну и dxdy.

2 Знакопеременные ряды.

Абсолютная и условная

сходимость рядов.

Ряд называют знакопеременным, если его членами являются действительные числа, а знаки его членов могут меняться как кому в голову взбредет. Пусть дан ряд:

u1+u2…+un=(1), где un – может быть как положительным, так и отрицательным. Рассмотрим ряд состоящий из абсолютных значений этого ряда:

|u1|+|u2|…+|un|=(2),

Если сходится ряд (2), то ряд (1) называют абсолютно сходящимся, а вот если ряд (1) сходится, а ряд (2) расходится. то ряд (1) наз сходящимся условно.

Т. Признак абсолютной сходимости:

Если знакочередующийся ряд сходится условно. то он и просто так сходится, при этом:

<=

Доквы:

т. к. 0<=|un|+un<=2|un|, то по признаку сравнения сходится ряд |un|+un, тогда сходится ряд: (|un|+un)-|un|=un. Далее, т. к. по св-ву абсолютной величины |Sn|=|u1+u2+…+un|<=|un| "nÎN, то переходя к пределу получим:

<=

Т2 Если ряд (1) абсолютно сходится, то и любой ряд составленный из тех же членов, но в любом другом порядке тоже абсолютно сходится и его сумма равна сумме ряда un – Sn. А вот с условно сходящимися рядами все гораздо запущенней.

Т(Римана)

Если знакопеременный ряд с действительными членами сходится условно, то каким бы ни было дейст. число S можно так переставить члены ряда, что его сумма станет равна S, т. е. сумма неабсолютно сходящегося ряда зависит от порядка слагаемых

№10

1 Вычисление массы,

координат центра масс,

моментов инерции плоской

материальной пластины с

помощью 2ного интеграла.

Масса плоской пластины вычисляется по ф-ле:

, где r(х, у) – поверхностная плотность.

Координаты центра масс выч по ф-ле:

если пластина однородная, т. е. r(х, у) – const, то ф-лы упрощаются:

Статические моменты плоскостей фигуры Д относит осей оу и ох

Момент инерции плоской пластины относительно осей ох, оу, начала координат:

J0=Jx+Jy

если пластина однородная, то ро вышвыривается на фиг и считается равной 1.

2 Сходимость функциональных последовательностей и рядов

Функциональной последовательностью заданной на множестве Е, наз. последовательность ф-ций {fn(x)} (1)определенных на Е и принимающих числовые действительные значения.

Пусть задана поледовательность числовых ф-ций {un(x)} Формальнг написанную сумму: (2) называют функциональным рядом на множестве Е, а ф-цию un(x) – его членами. Аналогично случаю числовых рядов сумма: Sn(x) = u1(x)+u2(x)+…+un(x) называется частичной суммой ряда n порядка, а ряд: un+1? un+2… - его n-ным остатком. при каждом фиксированном х = х0 Î Е получим из (1) числовую последовательность {fn(x0)}, а из (2) – числовой ряд, которые могут сходится или расходится. если кто-нибудь из оных сходится, то сходится и функциональная посл (1) в т х0, и сия точка наз. точкой сходимости.

Если посл(1) сход на м-ж Е, то ф-ция f, определенная при "xÎEf(x) = назывется пределом посл (1), если ряд(2) сходится на м-ж Е, то ф-ция S(x) определенная при "xÎ Е равенством

S(x)=

называется суммой ряда (2).

Остаток ряда сходится только когда на этом же м-ж сходится сам ряд., если обозначить сумму остатка ряда через rn (ч), то S(x) = Sn(x)+rn (x)

Если ряд (2) сходится абсолютно, то он наз абсолютно сходящимся на м-ж Е. Множество всех точек сходимости функционального ряда наз областью сходимости. Для определения области сходимости можно использовать признак Даламбера и Коши. С ихнею помашшю ф-ц ряд исследуется на абсолютную сходимость Например, если существует

и

, то ряд (2) абсолютно сходится при k(x)<1 и расходится при k(x)>1.

№11

1 Тройные интегралы

Пусть на некоторой ограниченной замкнутой области V трехмерного пространства задана ограниченная ф-ция f (x,y,z). Разобьем область V на n произвольных частичных областей, не имеющих общих внутренних точек, с объемами DV1… DVn В каждой частичной области возбмем произв. точку М с кооорд Mi(xi,hi,ci) составим сумму: f(xi,hi,ci)×DVi, кот наз интегральной суммой для ф-ции f(x,y,z). Обозначим за l максимальный диаметр частичной области. Если интегральная сумма при l- 0 имеет конечный предел, то сей предел и называется тройным интегралом от ф-ции f(x,y,z) по области V И обозначается:

2 Равномерная

сходимость функциональных

последовательностей и рядов.

Признак Вейерштрасса.

Ф-циональную последовательность {fn)x)} xÎE наз. равномерно сходящейся ф-цией f на м-ж Е, если для Îe >0, сущ номер N, такой, что для " т х ÎE и "n >N выполняется ¹-во: |fn(x)-f(x)|<e. Если м-ж {fn)x)} равномерно сходится на м-ж Е, то она и просто сходится в ф-ции f на сем м-ж. тогда пишут: fn-f.

наз. равномерно сходящимся рядом, если на м-ж Е равномерно сходится последовательность его частичной суммы. , т. ен. равномерная сходимость ряда означает:Sn(x) -f(x) Не всякий сходящийся ряд является равномерно сходящимся, но всякий равномерно сходящийся – есть сходящийся (не, вот это наверное лет 500 выдумывали.)

Т. (Признак Вейерштрасса равномерной сходимости ряда)

Если числовой ряд: (7),

где a >=0 сходится и для "xÎE и "n = 1,2… если выполняется нер-во |un(x)|<=an(8), ряд (9) наз абсолютно и равномерно сходящимся на м-ж Е.

Док-вы:

Абсолютная сходимость в каждой т. х следует из неравенства (8) и сходимости ряда (7). Пусть S(x) – сумма ряда (9), а Sn(x) – его частичная сумма.

Зафиксируем произвольное e >0 В силу сходимости ряда (7) сущ. номера N, "n >N и вып. нерво

Следовательно: |S(x)-Sn(x)| =

Это означает, что Sn(x) -S(x) что означает равномерную сходимость ряда..

№12

1 Замена переменных

в тройном интеграле.

Если ограниченная замкнутая область пространства V = f(x,y,z) взаимно однозначно отображается на область V’ пространства = (u,v,w) Если непрерывно дифференцируемы функции: x=x(u,v,w), y=y(u,v,w), z=z(u,v,w) и существует якобиан

то справедлива формула:

При переходе к цилиндрическим координатам, с вязанными с x,y,z формулами: x=rcosj, y=rsinj, z=z (0<=r<=+¥, 0<=j <= 2p, -¥<=z<=+¥)

Якобианпреобразования:

И поэтому в цилиндрических координатах переход осуществляется так:

При переходе к сферическим координатам: r? jq, связанными с z,y,z формулами x=rsinq×cosj,

y=r sinqsinj, z=rcosq.

(0<=r<=+¥, 0<=j <= 2p,

0<=q <=2p)

Якобиан преобразования:

Т. е. |J|=r2 ×sinq.

Итак, в сферических координатах сие будет:

2 Свойства равномерно

сходящихся рядов

Т1 Если ф-ция un(x), где х Î Е непрерывна в т. х0 ÎE и ряд (1) равномерно сходится на Е, то его сумма S(x) = также непрерывна в т. х0.

Т2 (Об поюленном интегрировании ряда)

Пусть сущ. ф-ция un(x) ÎR и непрерывная на отр. [a,b] и ряд (3) равномерно сходится на этом отрезке, тогда какова бы ни была т. х0 Î [a, b] (4) тоже равномерно сходится на [a,b]. В частности: при x0 = a, х = b: т. е. ряд (3) можно почленно интегрировать.

Т3 (о почленном дифференцировании ряда)

Пусть сущ. ф-ция un(x) ÎR и непрерывная на отр. [a,b] и ряд её производных (6) равномерно сходящийся на отр [a,b] тогда, если ряд сходится хотя бы в одной точке x0 Î [a,b] то он сходится равномерно на всем отрезке [a,b], его сумма S(x) = является непрерывно дифференцируемой ф-цией и

S’(x)= (9)

В силу ф-л ы (8) последнее равенство можно записать:

()’ =

So ряд (7) можно почленно дифференцировать

№13

1 Приложения

тройных интегралов

Объем тела

Масса тела: , где r(М) = r(x,y,z) - плотность.

Моменты инерции тела относительно осей координат:

Момент инерции относительно начала координат:

Координаты центра масс:

m – масса.

Интегралы, стоящие в числителях выражают статические моменты тела: Myz, Mxz, Mxy относит коорд плоскостей oyz, oxz, oxy. Если тело однородное: r(М) = const, то из формул она убирается и оне упрощаются как в 2ных интегралах.

2 Степенные ряды. Теорема Абеля

Степенным рядом наз функциональный ряд вида: a0 +a1 x+a2 x2 +… + an xn = (1) xÎR членами которого являются степенные ф-ции. Числа anÎR, наз коэффициентами ряда(1). Степенным рядом наз также ряд:

a0 +a1 (x-x0)+a2 (x-x0)2 … + an (x-x0)n = (2)

Степенной ряд (1) сходится абсолютно по крайней мере в т. х = 0, а ряд (2) в т х = х0, т .е в этих случаях все лены кроме 1 равны 0. Ряд (2) сводится к ряду (1) по ф-ле у = х-х0.

Т Абеля

1Если степенной ряд (1) сходится в т. х0 ¹ 0, то он сходится абсолютно при любом х, для которого |x|<|x0|.

2Если степеннгой ряд (1) расходится в т. х0, то он расходится в любой т. х, для которой |x|>|x0|

№14

1 Определение криволинейных

интегралов 1 и 2 рода

Криволинейный интеграл по длине дуги (1 рода)

Пусть ф-ция f(x,y) определена и непрерывна в точках дуги АВ гладкой кривой К. Произвольно разобъем дугу на n элементарных дуг точками t0..tn пусть Dlk длина k частной дуги. Возьмем на каждой элементарной дуге произвольную точку N(xk,hk) и умножив сию точку на соотв. длину дуги составим три интегральную суммы:

d1 = f(xk,hk)×Dlk

d2 =Р(xk,hk)×Dхk

d3 = Q(xk,hk)×Dyk,

гдеDхk = xk -xk-1 , Dyk = yk -yk-1

Криволинейным интегралом 1 рода по длине дуги будет называться предел интегральной суммы d1 при условии, что max(Dlk) - 0

Если предел интегральной суммы d2 или d3 при l- 0, то этот предел наз. криволинейным интегралом 2 рода, функции P(x,y) или Q(x,y) по кривой l = AB и обозначается:

или

сумму: + принято называть общим криволинейным интегралом 2 рода и обозначать символом:

в этом случае ф-ции f(x,y), P(x,y), Q(x,y) – называются интегрируемыми вдоль кривой l = AB. Сама кривая l наз контуром или путем интегрирования А – начальной, В – конечной точками интегрирования, dl – дифференциал длины дуги, поэтому криволинейный интеграл 1 рода наз. криволинейным интегралом по дуге кривой, а второго рода – по функции..

Из определения криволинейных интегралов следует, что интегралы 1 рода не зависят от того в каком направлении от А и В или от В и А пробегается кривая l. Криволинейный интеграл 1 рода по АВ:

, для криволинейных интегралов 2 рода изменение направления пробегания кривой ведет к изменению знака:

В случае, когда l – замкнутая кривая т. е. т. В совпадает с т. А, то из двух возможных направлений обхода замкнутого контура l называют положительным то направление, при котором область лежащая внутри контура остается слева по отношению к ??? совершающей обход, т. е. направление движения против часовой стрелки. Противоположное направление обхода наз – отрицательным. Криволинейный интеграл АВ по замкнутому контуру l пробегаемому в положит направлении будем обозначать символом:

Для пространственной кривой аналогично вводятся 1 интеграл 1 рода:

и три интеграла 2 рода:

сумму трех последних интегралов наз. общим криволинейным интегралом 2 рода.

2 Радиус сходимости и интервал сходимости степенного ряда.

Рассмотрим степенной ряд:

(1) Число (конечное или бесконечное) R>=0 наз радиусом сходимости ряда (1) если для любого х такого, что |x|<R ряд (1) сходится, а для " х таких. что |x|>R ряд расходится Интервал на числовой оси состоящий из т. х для которых |x|<R, т. е. (-R, +R) наз. интервалом сходимости.

Т1 Для всякого степенного ряда (1) существует радиус сходимости R 0<=R<=+¥ при этом, если |x|<R, то в этой т. х ряд сходится абсолютно

Если вместо х взять у = х-х0, то получится: интервал сходимости: |x-x0<R| будет: (x0-R, x0+R)При этом если |x-x0|<R? то ряд сходится в т. x абсолютно иначе расходится. На концах интервала, т. е. при x = -R, x=+R для ряда (1) или x = x0-R, x=x0+R для ряда (3) вопрос о сходимости решается индивидуально. У некоторых рядов интервал сходимости может охватывать всю числовую прямую при R = +¥ или вырождаться в одну точку при R = 0.

Т2 Если для степенного ряда (1) существует предел (конечный или бесконечный): , то радиус сходимости будет равен этому пределу.

Док-вы: Рассмотрим ряд из абсолютных величин и по Даламберу исследуем его на сходимость:

(5)

1)Рассмотрим случай, когда конечен и отличен от 0. Обозначив его через R запишем (5) в виде При числовом значении х степенной ряд становится числовым рядом, поэтому по Даламберу ряд (1) сходится если |x|/R<1, т. е. |x|<R, тогда по признаку абсолютной сходимости ряд (1) сходится абсолютно при |x|<R иначе ряд расходится.

2)Пусть = ¥ тогда из(5) следует, что для любого х ÎR Итак ряд (1) сходится при любом х причем абсолютно.

3) Пусть =0 тогда из (5) следует, что и ряд расходится для любого х. Он сходится только при х = 0 В этом сл-е R = 0.

Т3 Если существует предел конечный или бесконечный , то (10)

№15

1 условия

существования и вычисления

криволинейных интегралов.

Кривая L наз. гладкой, если ф-ции j(t), y(t) из определяющих её параметрических уравнений:

(1)

имеет на отрезке [a,b] непрерывные производные: j’(t), y’(t).Точки кривой L наз особыми точками, если они соответствуют значению параметра tÎ [a,b] для которых (j’(t))2 +(y’(t))2 = 0 т. е. обе производные обращаются в 0. Те точки для которых сие условие не выполняется наз. обычными (ВАУ!).

Если кривая L=AB задана ф-лами (1), является гладкой и нет имеет обычных точек, а ф-ции f(x,y), P(x,y), Q(x,y) непрерывны вдоль этой кривой, то криволинейные интегралы всех видов существуют (можно даже ихние формулы нарисовать для наглядности) и могут быть вычислены по следующим формулам сводящим эти интегралы к обычным:

Отседова жа вытекаает штаа:

В частности, если кривая АВ задана уравнением y = y(x), a<=x<=b , где у(х) непрерывно дифференцируемая ф-ция, то принимая х за параметр t получим:

ну и сумма там тожжа упростица.

ну и наоборот тожжа так будит, если х = х(у)

Если АВ задана в криволинейных координатах a <= j <= b где ф-ция r(j) непрерывно дифференцируема на отрезке [a, b] то имеет место частный случай, где в качестве параметра выступает полярный угол j. x = r(j)×cos(j),

y= r(j)×sin(j).

и у второго рода так же.

Прямая L наз кусочно-гладкой, если она непрерывна и распадается на конечное число не имеющих общих внутренних точек кусков, каждый из которых представляет собой гладкую кривую. В этом случает криволинейные интегралы по этой кривое определяются как сумма криволинейных интегралов по гладким кривым составляющим сию кусочно-гладкую кривую. все выше сказанное справедливо и для пространственной кривой (с буквой зю).

2 Свойства степенных рядов

Т1 Если степенной ряд (1) имеет радиус сходимости R>0, то на любом отрезке действительной оси вида |x|<=r, 0<r<R (2) (или [-r,r]) целиком лежащем внутри интервала сходимости ряд (1) сходится равномерно.

Для ряда отрезком равномерной сходимости будет отрезок |x-x0|<=r или ([x0-r,x0+r])

Т2 На любом отрезке |x-x0|<=r сумма степенного ряда является непрерывной ф-цией.

Т3 Радиусы сходимости R, R1, R2 соответственно рядов×(5), (6), (7) равны: R1=R2=R3. Итак ряды (6) и (7) полученные с помощью формального интегрирования и дифференцирования имеют те же радиусы сходимости, что и исходный ряд.

Пусть ф-ция f(x) является суммой степенного ряда (9)

Т4 Дифференцирование степенного ряда

Если ф-ция f(x) на интервале (x0-R, x0+R) является суммой ряда (9), то она дифференцируема на этом интервале и её производная f’(x) находится дифференцированием ряда (9):

f’(x)= При этом радиус сходимости полученного ряда = R

Т5 О интегрировании степенного ряда

Степенной ряд (9) можно почленно интегрировать на любом отрезке целиком принадлежащем интервалу сходимости при этом полученный степенной ряд имеет тот же радиус сходимости что и исходный ряд.

Последовательное применение Т4 приводит к утверждению, что ф-ция f имеет на интервале сходимости производные всех порядков, которые могут быть найдены из ряда (9) почленным дифференцированием. При интегрировании и дифференцировании степенного ряда внутри интервала сходимости радиус сходимости R не меняется, однако на концах интервала может изменяться.

№16

1 Свойства

криволинейных интегралов

Св-ва криволинейных интегралов 1 рода:

1.Константа выносится за знак интеграла, а интеграл суммы можно представить в виде суммы интегралов:

2. Если дуга АВ состоит из двух дуг Ас и Св не имеющих общих внутренних точек и если для ф-ции f(x,y) сущ криволинейный интеграл по АВ, то для для сей ф-ции сущ криволинейные интегралы по АС и по ВС причем:

3.

4.Ф-ла среднего значения

если ф-ция f(x,y) непрерывна вдоль кривой АВ, то на этой кривой найдется точка М, такая, что:

, где l – длина кривой

Криволинейный интеграл 2 рода обладает всеми свойствами интегралов 1 рода, и исчо при изменении направления прохождения кривой он меняет знак. .И вапще все сказанное выше справедливо и для пространственной кривой (этта та которая с буквой зю)

2 Разложение ф-ций в степенные ряды. Ряды Тейлора и Маклорена.

Пусть(1) сходится при |x-x0|<R а его сумма является ф-лой f(x)= (2) В этом случае говорят, что ф-ция f(x) разложена в степенной ряд. (1) .

Т1 Если ф-ция f распространяется в некоторой окрестности т. х0 f(x)= , то

и справедлива формула: (15) Если в некоторой окрестности заданной точки ф-ция распадается в степенной ряд, то это разложение единственно.

Пусть дествит. ф-ция f определена в некоторой окрестности т. х0 и имеет в этой точке производные всех порядков, тогда ряд:(6) наз рядом Тейлора ф-ции f в т, х0

При х0=0 ряд Тейлора принимает вид:

(6’) и называется ряд Маклорена.

Ряд Тейлора может:

1 Расходится всюду, кроме х=х0

2 Сходится, но не к исходной ф-ции f(x), а к какой-нибудь другой.

3 Сходится к исходной ф-ции f(x)

Бесконечная дифференцируемость ф-ции f(x) в какой-то т. х0 является необходимым условием разложимости ф-ции в ряд Тейлора, но не является достаточным. Для введения дополнительных условий треб. ф-ла Тейлора.

Т2 Если ф-ция f(x) (n+1) раз дифференцируема на интервале (x0-h, x0+h) h>0, то для всех xÎ (x0-h, x0+h) имеет место ф-ла Тейлора:

где остаток rn (x) можно записать:

(8)

(9) Формула (8) наз остаточным членом ф-лы Тейлора в интегральной форме. Ф-ла (9) – формулой Лагранжа.

Преобразуя ф-лу Тейлора при х0 = 0 получаем ф-лу Маклорена.

Т3 Если ф-ция f(x) имеет в окрестности т х0 производные любого порядка и все они ограниченны одним и тем же числом С, т е "xÎU(x0) |f( n ) (x)|<=C, то ряд Тейлора этой ф-ции сходится в ф-ции f(x) для всех х из этой окрестности.

№17

1 Формула Грина

Сия очень полезная в сельском хозяйстве формула устанавливает связь между криволинейными и двойными интегралами.

Пусть имеется некоторая правильная замкнутая область Д, ограниченная контуром L и пущая ф-ции P(x,y) и Q(x,y) непрерывны вместе со своими частными производными: в данной области. тогда имеет место ф-ла:

И вот вся эта фигулина и есть формула Грина.

Контур L определяющий область д может быть задан показательными уравнениями х = х1(у), х=х2(у) с<=y<=dx1(y)<=x2(y) или

y = y1(x), y=y2(x) a<=x<=b y1(x)<=y2(x).

Рассмотрим область Д ограниченную неравенствами: a<=x<=b и y1(x)<=y2(x). и преобразуем двойной интеграл к криволинейным для чего сведем его к повторному и ф-ле Невтона-Лыебница выполним интегрирование по у и получим:

каждый из 2 определенных интегралов в правой части последнего равенства = криволинейному интегралу 2 рода взятому по соответствующей кривой а именно:

Итак двойной интеграл:

Формула Грина остается справедливой для всякой замкнутой области Д, которую можно разбить проведением дополнительных линий на конечной число правильных замкнутых областей.

2 Разложение элементарных ф-ций в ряд Тейлора (Маклорена)

1Разложение ф-ции ех

ряд Маклорена.

радиус сходимости:

R=¥ следовательно ряд абсолютно сходится на всей числовой прямой.

2Разложение sinx и cosx В степенной ряд Маклорена

сходится на всей числовой оси

сходится на всей числовой оси

3. f(x) = (1+x)a

Наз. биномиальный ряд с показателем a Различают 2 случая:

1- aÎN, тогда при любом х все члены ф-лы исчезают, начиная с (a +2) поэтому ряд Маклорена содержит конечное число членов и сходится при всех х. Получается формула Бинома Невтона: , где биномиальный коэффициент.

2- aÎR>N (a¹ 0 х ¹ 0) и ряд сходится абсолютно при |x|>1

4 Разложение ф-ции ln(1+x)

сходится при –1<x<=1

5 Разложение arctgx в степенной ряд Маклорена

сходится при -1<=x<=1

№18

1 Некоторые приложения криволинейных интегралов 1 рода .

1.Интеграл - длине дуги АВ

2.Механический смысл интеграла 1 рода.

Если f(x,y) = r(x,y) – линейная плотность материальной дуги, то ее масса:

для пространственной там буква зю добавляется.

3.Координаты центра масс материальной дуги:

4. Момент инерции дуги лежащей в плоскости оху относительно начала координат и осей вращения ох, оу:

5. Геометрический смысл интеграла 1 рода

Пусть ф-ция z = f(x,y) – имеет размерность длины f(x,y)>=0 во всех точках материальной дуги лежащей в плоскости оху тогда:

, где S – площадь цилиндрической поверхности, кот состоит из перпендикуляров плоскости оху, восст в точках М(x,y) кривой АВ.

2 Геометрические и арифметические ряды.

№19

1 Некоторые приложения криволинейных интегралов 2 рода.

Вычисление площади плоской области Д с границей L

2.Работа силы. Пусть материальная т очка под действием силы перемещается вдоль непрерывной плоской кривой ВС, направясь от В к С, работа этой силы:

при пространственной кривой там исчо третья функция появитца для буквы зю.

2 Свойства сходящихся рядов

№20

1 Условия независимости криволинейного интеграла 2 рода от пути интегрирования.

Плоская область W наз односвязной если не имеет дыр. т. е. однородная.

Пусть ф-ция P(x,y) и Q(x,y)вместе со своими частными производными непрерывны в некоторой замкнутой, односвязной области W тогда следующие 4 условия эквиваленты, т. е. выполнение какого либо из них влечет остальные 3.

1. Для " замкнутой кусочногладкой кривой L в W значение криволинейного интеграла:

2. Для все т. А и т. В области W значение интеграла

не зависит от выбора пути интегрирования, целиком лежащего в W.

3. Выражение Pdx+Qdy представляет собой полный дифференциал некоторых функций определенных в W существует ф-ция E=c(х,у) опред в W такая, что dE = Pdx+Pdy

4. В области W

Отседова следовает, что условие 3 является необходимым и достаточным условием при котором интегралы 2 рода не зависят от выбора пути интегрирования.

2 Интегральный признак сходимости ряда. Ряд Дирихле.

№21

1 Интегрирование в полных дифференциалах

Пущай ф-ция P(x,y) и Q(x,y) - непрерывны в замкнутой области W и выражение P(x,y) + Q(x,y) есть полный дифееренциал некоторой ф-ции F(x,y) в W , что равносильно условию: , тогда dF=Pdx+Qdy.

Для интегралов независящих от пути интегрирования часто применяют обозначение:

или

А(x0,y0) Îl , В = (х,у) Îl

поэтому

F(x,y)=

где (х0,у0) – фиксированная точка Îl, (x,y) – произвольная точка Îl , с – const. и дает возможность определить все ф-ции, имеющие в подинтегральном выражении свои полные дифференциалы. Тк. интеграл не зависит от пути интегрирования, за путь инт. удобно взять ломаную звень которой параллельны осям координат. тогда формула преобразуется к виду.

2 Признаки сравнения

№22

1 Сведение 2-ного интеграла к повторному

Пусть у1(х), у2(х) непрерывны на отрезке [a, b], у1(х)<= у2(х) на всем отрезке.

D={x,y}: a<=x<=b; y1(x)<=y<=y2(x)

Отрезок [a,b] – проекция Д на ось ох. Для такой области людбая прямая, параллельная оу и проходящая через внутреннюю точку области Д пересекает границу области не более чем в 2 точках. Такая область наз. правильной в направлении оси оу.

Если фция f(x,y) задана на Д и при каждом х Î [a,b] непрерывна на у , на отрезке, [y1(x),y2(x)], то фц-ия F(x) = , наз. интегралом, зависящим от параметра I, а интеграл : , наз повторным интегралом от ф-ции f(x,y) на области Д. Итак, повторный интеграл вычисляется путем последовательного вычисления обычных определенных интегралов сначала по одной., а затем по другой переменной.

2 Признаки Даламбера и Коши

№23

1 2 ной интеграл

в полярных координатах

Переход к полярным координатам частный случай замены переменных.

Луч, проходящий из произв точки О имеет на плоскости полярные координаты A(r, j) где r = |ОA | расстояние от О до А полярный радиус. j = угол между векторами ОА и ОР – полярный угол отсчитываемой от полярной оси против часовой стрелки. всегда 0<=r<=+¥, 0<=j <=2p .

Зависимость между прямоугольными и полярными координатами: x = r×cosj , y = r×sinj .

Якобиан преобразования будет равен:

И формула при переходе примет вид:

2 Знакочередующиеся ряды признак Лейбница

№24

1 Замена переменных

в тройном интеграле

Если ограниченная замкнутая область пространства V = f(x,y,z) взаимно однозначно отображается на область V’ пространства = (u,v,w) Если непрерывно дифференцируемы функции: x=x(u,v,w), y=y(u,v,w), z=z(u,v,w) и существует якобиан

то справедлива формула:

При переходе к цилиндрическим координатам, с вязанными с x,y,z формулами: x=rcosj, y=rsinj, z=z (0<=r<=+¥, 0<=j <= 2p, -¥<=z<=+¥)

Якобиан преобразования:

И поэтому в цилитндрических координатах переход осуществляется так:

При переходе к сферическим координатам: r? jq, связанными с z,y,z формулами x=rsinq×cosj,

y=r sinqsinj, z=rcosq.

(0<=r<=+¥, 0<=j <= 2p,

0<=q <=2p)

Якобиан преобразования:

Т. е. |J|=r2 ×sinq.

Итак, в сферических координатах сие будет:

2 Радиус сходимости и интервал сходимости степенного ряда

№25

1 Условия

существования и вычисления криволинейных интегралов

Кривая L наз. гладкой, если ф-ции j(t), y(t) из определяющих её параметрических уравнений:

(1)

имет на отрезке [a,b] непрерывные производные: j’(t), y’(t).Точки кривой L наз особыми точками, если они соответствуют значению параметра tÎ [a,b] для которых (j’(t))2 +(y’(t))2 = 0 т. е. обе производные обращаются в 0. Те точки для которых сие условие не выполняется наз. обычными (ВАУ!).

Если кривая L=AB задана ф-лами (1), является гладкой и нет имеет обычных точек, а ф-ции f(x,y), P(x,y), Q(x,y) непрерывны вдоль этой кривой, то криволинейные интегралы всех видов существуют (можно даже ихние формулы нарисовать для наглядности) и могут быть вычислены по следующим формулам сводящим эти интегралы к обычным:

Отседова жа вытекаает штаа:

В частности, если кривая АВ задана уравнением y = y(x), a<=x<=b , где у(х) непрерывно дифференцируемая ф-ция, то принимая х за параметр t получим:

ну и сумма там тожжа упростица.

ну и наоборот тожжа так будит, если х = х(у)

Если АВ задана в криволинейных координатах a <= j <= b где ф-ция r(j) непрерывно дифференцируема на отрезке [a, b] то имеет место частный случай, где в качестве параметра выступает полярный угол j. x = r(j)×cos(j),

y= r(j)×sin(j).

и у второго рода так же.

Прямая L наз кусочно гладкой, если она непрерывна и распадается на конечное число не имеющих общих внутренних точек кусков, каждый из которых представляет собой гладкую кривую. В этом случает криволинейные интегралы по этой кривое определяются как сумма криволинейных интегралов по гладким кривым составляющим сию кусочно-гладкую кривую.

все выше сказанное справедливо и для пространственной кривой (с буквой зю).

2 Разложение элементарных ф-ций в ряд Тейлора (Маклорена).

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений22:22:21 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:53:25 24 ноября 2015

Работы, похожие на Шпаргалка: Лекции по матану (III семестр) переходящие в шпоры

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151185)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru