Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Древнегреческий учённый-математик АРХИМЕД

Название: Древнегреческий учённый-математик АРХИМЕД
Раздел: Рефераты по математике
Тип: реферат Добавлен 05:18:35 29 сентября 2005 Похожие работы
Просмотров: 15321 Комментариев: 26 Оценило: 33 человек Средний балл: 4.5 Оценка: 5     Скачать

Лиепайская ср. Школа №7

Проект

Тема:

Древнегреческий учённый-математик

АРХИМЕД

Автор: Сергей Кравченко

Ученика 12.Б класса

Консультант: Дина Михайличева

Учитель математики

Лиепая

2003/2004 уч. год.

содержание

Вступление .............................................................................................

1. Биография Архимеда .............................................................. 4-6

2. Его великие открытия ................................................. ......... 6 -8

3. Его задачи ............................................ ............................….. 8 - 10

биография

Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, расположенного на восточном побережье острова Сицилии, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие ученые, в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку. После учебы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца. В теоретическом отношении труд этого великого ученого был ослепляюще многогранным. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики.

Если ко всему перечисленному прибавить еще то, что сделано Архимедом в области механики, то станут понятными то изумление и уважение, с которыми к нему относились его современники и теперь относятся все те, кто близок к математике, механике и прикладным наукам.

Пленяет и высокий моральный облик Архимеда. Он был подлинным патриотом своего города. Когда настали тяжелые дни для Сиракуз и римские войска под командованием Марцелла осадили город с двух сторон и никто из осажденных уже не надеялся на спасение, вот тут-то и привел Архимед в действие свои машины, которые задолго до этого он построил.

«В неприятельскую пехоту неслись пущенные им раз личного рода стрелы и невероятной величины камни с шумом и страшной быстротой. Решительно ничто не могло вынести силы их удара; они опрокидывали тех, в кого они попадали, и расстраивали их ряды. На море внезапно поднимались со стен над кораблями бревна, загнутые на подобие рога. Одни из них ударяли в некоторые корабли сверху и силой удара топили их; другие железными ла пами или клювами, наподобие журавлиных, схватывали корабли за носы, поднимали их на воздух, ставили корабль на корму и затем топили . . . Часто корабль поднимало высоко над поверхностью моря, и, вися в воздухе, он к ужасу окружающих качался в разные стороны, являя собой страшное зрелище, пока весь экипаж не был сброшен или перестрелян . . . Самбука, машина, которую Марцелл поставил на несколько кораблей и подводил к стенам . . . еще далеко не успела подойти к ним, как из-за них вылетел камень весом в десять талантов, за ним другой, третий . . . Они падали на машину со страшным шумом и силой, разбили ее корпус, разорвали болты и уни чтожили связи, так что Марцелл, не зная что делать, решил отплыть поспешно с флотом и приказал пехоте отступать ... но стрелы и здесь настигали их, попадали в отступающих, так что они понесли большие потери . . . Марцелл все же успел избежать опасности. Он шутил над своими техниками и механиками и говорил: «Уж не перестать ли нам драться с математиком? Он, сидя спо койно за стеной, топит наши корабли и, бросая в нас разом столько стрел, оставляет позади мифических сто руких великанов. Действительно, все остальные сираку зяне служили своего рода телом архимедовых машин, один он был душой, которая всех двигала, все направ ляла» (Плутарх).

Машины Архимеда могли защитить город только от неприятельских приступов, но не могли спасти осажденных от голода. Марцеллу удалось, наконец, ворваться в город. Взятие Сиракуз, как и других городов, попавших в руки римлян, сопровождалось невероятными актами жесто­кости, убийствами и грабежами. В числе убитых был и Архимед.

Плутарх пишет: «Он находился один в своем жилище, углубленный в рассмотрение геометрических чертежей. Будучи всем умом и чувствами погружен в размышления, он не обратил внимания на шум и крики римлян, вор вавшихся в город. Вдруг перед ним предстал римский солдат. Архимед успел только крикнуть: «Не трогай моих чертежей, -как меч солдата поразил его».

В заключение хочется привести высказывание Плу тарха о глубине геометрических положений Архимеда.

«Во всей геометрии нет теорем более трудных и более глубоких, нежели теоремы Архимеда.

Мне самому всегда казалось, когда я впервые знако мился с его математическими предложениями, что они до того трудны, что ум человеческий не в состоянии найти им доказательства. Однако, когда узнаешь, как сам Архимед их доказывает, то тебе кажется, будто ты сам нашел это доказательство — до того оно просто и легко».

великие открытия архимеда

В сочинении "Параболы квадратуры" Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде "Об измерении круга" Архимед впервые вычислил число "пи" - отношение длины окружности к диаметру - и доказал, что оно одинаково для любого круга. Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел. Некоторые теоремы планиметрии также впервые были доказаны Архимедом. Так, теорема о площади треуголь­ника по трем его сторонам

указанную формулу называют формулой Герона, потому что ему принадлежит заслуга широкого применения её на практике.

приписываемая Герону, впервые была предложена Архи­медом. Математический метод Архимеда, связанный с математическими работами пифагорейцев и с завершившей их работой Эвклида, а также с открытиями современников Архимеда, подводил к познанию материального пространства, окружающего нас, к познанию теоретической формы предметов, находящихся в этом пространстве, формы совершенной, геометрической формы, к которой предметы более или менее приближаются и законы которой необходимо знать, если мы хотим воздействовать на материальный мир. Но Архимед знал также, что предметы имеют не только форму и измерение: они движутся, или могут двигаться, или остаются неподвижными под действием определенных сил, которые двигают предметы вперед или приводят в равновесие. Великий сиракузец изучал эти силы, изобретая новую отрасль математики, в которой материальные тела, приведенные к их геометрической форме, сохраняют в то же время свою тяжесть. Эта геометрия веса и есть рациональная механика, это статика, а также гидростатика, первый закон которой открыл Архимед (закон, носящий имя Архимеда), согласно которому на тело, погруженное в жидкость, действует сила, равная весу вытесненной им жидкости. Однажды приподнявши ногу в воде, Архимед констатировал с удивлением, что в воде нога стала легче. "Эврика! Нашел!" - воскликнул он, выходя из своей ванны. Анекдот занятный, но, переданный таким образом, он не точен. Знаменитое "Эврика!" было произнесено не в связи с открытием закона Архимеда, как это часто говорят, но по поводу закона удельного веса металлов - открытия, которое также принадлежит сиракузскому ученому и обстоятельные детали которого находим у Витрувия. Рассказывают, что однажды к Архимеду обратился Гиерон, правитель Сиракуз. Он приказал проверить, соответствует ли вес золотой короны весу отпущенного на нее золота. Для этого Архимед сделал два слитка: один из золота, другой из серебра, каждый такого же веса, что и корона. Затем поочередно положил их в сосуд с водой, отметил, на сколько поднялся ее уровень. Опустив в сосуд корону, Архимед установил, что ее объем превышает объем слитка. Так и была доказана недобросовестность мастера. Любопытен отзыв Цицерона, великого оратора древности, увидевшего "архимедову сферу" - модель, показывающую движение небесных светил вокруг Земли: "Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть". И, наконец, Архимед был не только великим ученым, он был, кроме того, человеком, страстно увлеченным механикой. Он проверяет и создает теорию пяти механизмов, известных в его время и именуемых "простые механизмы". Это - рычаг ("Дайте мне точку опоры, - говорил Архимед, - и я сдвину Землю"), клин, блок, бесконечный винт и лебедка. Именно Архимеду часто приписывают изобретение бесконечного винта, но возможно, что он лишь усовершенствовал гидравлический винт, который служил египтянам при осушении болот.

Впоследствии эти механизмы широко применялись в разных странах мира. Интересно, что усовершенствованный вариант водоподъемной машины можно было встретить в начале XX века в монастыре, находившемся на Валааме, одном из северных российских островов. Сегодня же архимедов винт используется, к примеру, в обыкновенной мясорубке. Изобретение бесконечного винта привело его к другому важному изобретению, пусть даже оно и стало обычным, - к изобретению болта, сконструированного из винта и гайки. Тем своим согражданам, которые сочли бы ничтожными подобные изобретения, Архимед представил решительное доказательство противного в тот день, когда он, хитроумно приладив рычаг, винт и лебедку, нашел средство, к удивлению зевак, спустить на воду тяжелую галеру, севшую на мель, со всем ее экипажем и грузом. Еще более убедительное доказательство он дал в 212 году до нашей эры.

Задачки с решениями

1. Дана окружность, радиус которой принят за 1. Построить вне ее ряд окружностей, концентрических с ней, так чтобы полученные кольца были все равновелики

между собой и площадь каждого из них равнялась бы площади меньшего круга (рис. 58).

2. Сторона правильного треугольника равна а. Из центра его радиусом a/3описана окружность. Определить площадь части треугольника, лежащей вне окружности (рис. 59).

3. Центры четырех кругов расположены в вершинах квадрата со стороной а. Радиусы всех кругов равны а. Вычислить площадь части плоскости, общей для всех кругов (рис. 60).

4. Найти площадь фигуры (рис. 61), если 01 А = а.

Софизм

Число π равно 2.

На отрезке АВ как на диаметре построим полуокруж­ность (рис. 62), разделив отрезок АВ пополам, на каждой

половине как на диаметре вновь построим полуокруж­ности, располагая их по разные стороны от АВ. Эти

две полуокружности составят волнообразную линию длина которой от A до B равна длине первоначальной полуокружности. Теперь разделим отрезок АВ на четыре равные части и построим волнообразную линию, со стоящую из четырех полуокружностей, с прежней суммой длин π*AB /2. Будем продолжать этот процесс неограниченно, деля отрезок АВ на 8, 16, ... равных частей и строя на них полуокружности, поочередно расположенные с одной и с другой стороны прямой АВ Получится по следовательность волнообразных линий, все более при ближающихся к отрезку АВ и имеющих его своим пре делом. В самом деле, как бы не была узка полоса, обра зованная прямыми KL и MN , параллельными АВ, найде тся в нашей последовательности такое место, начиная с которого все волнообразные линии на всем своем протяжении от A до B будут целиком умещаться внутри полосы. Но длина у всех волнообразных линий одинакова и равна π*AB /2. Такова же должна быть длина предела этих линий, т.е. отрезка AB Из равенства

(π/2)* AB = AB находим π = 2.


Список литературы

Ф. Рудио, О квадратуре круга, ГТТИ, 1934.

В. П. Щереметевский, Очерки по истории математики, Учпедгиз, 1940.

С. Я. Лурье, Архимед, АН СССР, 1945.

С. Н. Ш рей дер, Три задачи древней геометрии. Из опыта проведения внеклассной работы по математике в средней школе, Учпедгиз, 1955.

В. И. Лебедев, Очерки по истории точных наук, вып. 4, Знаменитые задачи древности, М., 1917.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений22:21:40 18 марта 2016
можно и лучше
тёмчик14:41:31 23 декабря 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:53:01 24 ноября 2015
норм
лель19:20:12 15 января 2013
нормик
14:19:37 19 апреля 2012

Смотреть все комментарии (26)
Работы, похожие на Реферат: Древнегреческий учённый-математик АРХИМЕД
Измерения геометрических величин в курсе геометрии 7-9 классов
... и научно-методические основы изучения измерений геометрических величин в школе §1. Практическая деятельность учащихся при изучении геометрии §2. ...
А именно, туда относят следующие понятия: длина отрезка, длина ломаной, периметр многоугольника, расстояние от точки до прямой, расстояние между параллельными прямыми, длина ...
Подробно описывается процесс измерения отрезков: авторы говорят, что для измерения длины данного отрезка АВ последовательно откладывают единичный отрезок ОЕ на луче АВ от вершины А ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 21680 Комментариев: 3 Похожие работы
Оценило: 2 человек Средний балл: 3.5 Оценка: неизвестно     Скачать
Развитие понятия "Пространство" и неевклидова геометрия
Оглавление Введение Глава I. Развитие геометрии 1.1 История геометрии 1.2 Постулаты Евклида 1.3 Аксиоматика Гильберта 1.4 Другие системы аксиом ...
АВ<A"B" (AB=A"B")
Например, прямые в сферической геометрии замкнуты и на них невозможно установить понятие точки, лежащей "между" для трех точек, инцидентных прямой, так как каждую из этих точек на ...
Раздел: Рефераты по математике
Тип: дипломная работа Просмотров: 1282 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Геометрия Лобачевского
Тема: "Геометрия Лобачевского" Выполнила: Зайнулина Г. Г.Бишкек 2010 Н.И. Лобачевский и его геометрия До начала XIX столетия ни одна из попыток ...
Работы Лобачевского опровергли такой взгляд, привели к широким обобщениям в геометрии и их важнейшим приложениям в различных разделах математики, механики, физики и астрономии.
Пусть даны точка А, *луч а с началом А, *отрезок АВ на этом *луче и *угол ab с вершиной А, образованный *лучом а вместе с *лучом b. Пусть даны также точка А', исходящий из нее *луч ...
Раздел: Рефераты по математике
Тип: реферат Просмотров: 5768 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Использование компьютерных технологий в изучении наглядной геометрии
Введение Преподавание геометрии не может обойтись без наглядности. В тесной связи с наглядностью обучения находится и его практичность. Ведь именно из ...
геометрические преобразования используются не только в курсе геометрии, но и в школьных курсах алгебры (построение графиков функций), физики (механика, оптика), химии ...
Отрезок AB" является образом отрезка АВ при симметрии, центр которой не указан
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 18886 Комментариев: 2 Похожие работы
Оценило: 4 человек Средний балл: 5 Оценка: неизвестно     Скачать
Оценка периметра многоугольника заданного диаметра
Дипломная работа По теме: "Оценка периметра многоугольника заданного диаметра" Оглавление Введение Глава 1. Общие сведения о задачах на экстремум ...
Одномерные выпуклые фигуры это линии, обладающие тем свойством, что отрезок АВ, соединяющий любые две точки А и В такой линии, целиком принадлежит ей.
1.2.14, а; в противном случае граница Ф являлась бы окружностью с диаметром АВ, и фигура Ф была бы кругом).
Раздел: Рефераты по математике
Тип: дипломная работа Просмотров: 7361 Комментариев: 1 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Психолого-педагогическое обоснование внеклассной работы по математике
Содержание Введение. 2 1. Психолого-педагогическое обоснование внеклассной работы по математике 4 2. Внеклассная работа как одно из направлений ...
В черном ящике лежит еще одно изобретение Архимеда, которое и по ныне используется в быту.
Что в черном ящике? (винт Архимеда, используется в мясорубке)
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 6457 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать
Евклідова і неевклідова геометрії
Зміст Введення Глава I. Розвиток геометрії 1.1 Історія геометрії 1.2 Постулати Евкліда 1.3 Аксіоматика Гильберта 1.4 Інші системи аксіом геометрії ...
АВ<A'' (AB=A''
Наприклад, прямі в сферичній геометрії замкнуті й на них неможливо встановити поняття крапки, що лежить "між" для трьох крапок, тому що кожну із цих крапок на окружності можна ...
Раздел: Рефераты по математике
Тип: дипломная работа Просмотров: 701 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Изучение геометрии на уроках математики в 5-6 классах
Дипломная работа По теме: Изучение геометрии на уроках математики в 5-6 классах Оглавление: Введение Глава 1. Роль изучения геометрии в формировании ...
1) Отметьте две точки - А и В. Проведите отрезок АВ.
Радиус, хорда и диаметр определяются как отрезки, соединяющие различные точки окружности.
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 36885 Комментариев: 3 Похожие работы
Оценило: 4 человек Средний балл: 4 Оценка: неизвестно     Скачать
Симметpия относительно окpужности
С.А. Ануфриенко Симметpия, как бы шиpоко или узко мы ни понимали это слово, есть идея, с помощью котоpой человек в течение веков пытался объяснить и ...
Только с помощью циркуля найти пересечение прямых (AB) и (CD), а также точки пересечения прямой (AB) с окружностью (задачи геометрии Мора-Маскерони).
Последнее означает, что - серединный перпендикуляр к отрезку [A B ]. Отсюда = invOR( ) - окружность, диаметр которой лежит на прямой (AB).
Раздел: Рефераты по математике
Тип: курсовая работа Просмотров: 2269 Комментариев: 6 Похожие работы
Оценило: 5 человек Средний балл: 5 Оценка: неизвестно     Скачать
Концепции современного естествознания
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ Ставропольский государственный университет Концепции современного естествознания Справочник ...
Известным ученым, математиком и механиком античности был Архимед (287-212 до н. э.). Он решил ряд задач по вычислению площадей поверхностей и объемов, определил значение числа ѭ ...
Ему принадлежат многочисленные изобретения: так называемый "архимедов винт" (устройство для подъема воды на более высокий уровень), различные системы рычагов, блоков, винтов для ...
Раздел: Рефераты по биологии
Тип: книга Просмотров: 7096 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Реферат: Древнегреческий учённый-математик АРХИМЕД (2817)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150684)
Комментарии (1839)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru