Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Геометрия Лобачевского

Название: Геометрия Лобачевского
Раздел: Рефераты по математике
Тип: реферат Добавлен 11:18:32 21 июля 2005 Похожие работы
Просмотров: 507 Комментариев: 3 Оценило: 2 человек Средний балл: 3.5 Оценка: неизвестно     Скачать

Реферат

З геометрії

На тему:

"Геомтрія Лобачевського"

Виконав

Учень 10-А класу

Середньої школи № 96

Коркуна Дмитро

Львів 2000

Нехай тепер АОВ – деякий гострий кут. (рис1) В геометрії Лобачевського можна вибрати таку точку М на стороні ОВ, що перпендикуляр MQ до сторони ОВ не перетинається з другою стороною кута. Цей факт як раз підтверджує, що не виконується п'яте правило: сума кутів ( і ( є менше розгорнутого кута, але прямі ОА і MQ не перетинаються. Якщо почати зближувати точку М до О, то найдеться така "критична" точка М0, що перпендикуляр M0Q0 до сторони OB поки що не перетинається зі стороною ОА, але для любої точки М`, яка лежить між О і М0, відповідаючий перпендикуляр М`Q` перетинається зі стороною ОА. Прямі ОА і M0Q0 все більше приближаються одна до одної, але спільних точок не мають. На рис.2 ці прямі зображено окремо; а саме такі необмежено наближаються одна до одної прямі Лобачевський в своїй геометрії називає паралельними. А два перпендикуляра до одної прямої, які необмежено віддаляються один від одного, як на рисунку Лобачевський називає прямими, які розходяться. Виявляється, що цим і обмежуються всі можливості розміщення двох прямих на площині Лобачевського: дві неспівпадаючі прямі, які або перетинаються в одній точці, або паралельні , або можуть бути такими, що розходяться (в цьому випадку вони мають єдиний спільний перпендикуляр)

На рис. 3 перпендикуляр МQ до сторони ОВ кута АОВ не перетинається зі стороною ОА, а прямі ОВ` , М`Q` симетричні прямим ОВ і MQ відносно ОА. Дальше |ОА| = |MB|, так як MQ – перпендикуляр до відрізка ОВ` в його середині і аналогічно M`Q` – перпендикуляр до відрізка ОВ` в його середині. Ці перпендикуляри не перетинаються, тому не існує точки, одинаково віддаленої від точок О,В,В`, отже трикутник ОВВ` не має описаного кола.

На рис. 4 зображено цікавий варіант розташування трьох прямих на площині Лобачевського: кожні дві із них паралельні, тільки в різних напрямках. А на рис. 5 всі прямі паралельні одна одній в одному напрямку (пучок паралельних прямих). Лінія позначена пунктиром на рис.5 "перпендикулярна" всім проведеним прямим (тобто дотична до цієї лінії в любій її точці М перпендикулярна прямій, яка проходить через М.). Ця лінія називається граничною кола, або орициклом. Прямі розглянутого пучка ніби являються її "радіусами", а центр граничної кола лежить в нескінченності, оскільки "радіуси" паралельні. В той же час гранична кола не являється прямою лінією, вона "викривлена". І інші властивості, які в евклідовій геометрії має пряма, в геометрії Лобачевського виявляються властивими другим лініям. Наприклад, з множини точок, які знаходяться на одній стороні від даної прямої на даній відстані від неї, в геометрії Лобачевського являють собою криву лінію, яка називається єквидистантою.

Ми коротко торкнулися деяких факторів геометрії Лобачевського, не згадуючи багатьох інших цікавих і змістовних теорем (наприклад, довжина кола і площа круга тут зростає в залежності від радіуса по показниковому закону). Виникає переконання, що ця теорія багата дуже цікавими і змістовними фактам, насправді не суперечлива. Але це переконання (яке було у всіх трьох творців неєвклідової геометрії) не замінює доведення несуперечливості.

Щоб дістати таке доведення , треба побудувати модель. І Лобачевський це добре розумів і намагався її знайти.

Але сам Лобачевський вже не зміг цього зробити. Побудова такої моделі (доведення несупечливості геометрії Лобачевського) випало на долю математиків наступного покоління.

В 1868 р. італійській математик Є. Бельтрамі дослідив зігнуту поверхність, яка називалась псевдосферою, і довів, що на цій поверховості діє геометрія Лобачевського! Якщо на цій лінії намалювати найкоротші лінії ("геодезичні") і вимірювати по цим лініям відстані, складати з дуг цих ліній трикутники тощо, то вияявляється, що в точності реалізуються всі формули геометрії Лобачевського (зокрема сума кутів будь-якого трикутника дорівнює менше 1800 ). Правда, на псевдосфері реалізується не вся площина Лобачевського.

Клейн бере деякий круг К и розглядає такі проективні перетворення площини, які відображають круг К на себе. "Площину" Клейн називає внутрішність круга К, а вказані проективні перетворення вважає "рухом" цієї "площини". Дальше кожну хорду круга К (без кінців оскільки беруться тільки внутрішні точки круга) Клейн вважає "прямою". Оскільки, "рух" являє собою проективні перетворення, "прямі" при цих рухах переходять в "прямі". Тепер в цій "площині" можна роздивлятися відрізки, трикутники тощо. Дві фігури називаються рівними, якщо кожна з них може бути перетворена в іншу деяким "рухом". Так само введені всі поняття, які згадуються в аксіомах в цій моделі. Наприклад, очевидно, що через будь-які дві точки А, В проходить єдина пряма. Також , можна прослідкувати, що через точку А, яка не лежить на прямій a, проходить нескінченно багато прямих , які не перетинають a. Пізніша перевірка показує, що в моделі Клейна виконуються и всі інші аксіоми геометрії Лобачевського. Частково для будь-якої прямої l існує "рух"., перетворюючи її в другу пряму l` з віміченою точкою А`. Це дозволяє перевірити виконання всіх аксіом геометрії Лобачевського.


Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений22:21:32 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:52:56 24 ноября 2015
прикольно. так держать. Ті что ботаник какой-то.
гріненко Таня17:34:41 26 ноября 2008

Работы, похожие на Реферат: Геометрия Лобачевского

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150903)
Комментарии (1842)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru