Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: История развития начертательной геометрии

Название: История развития начертательной геометрии
Раздел: Рефераты по истории
Тип: реферат Добавлен 13:19:09 29 июля 2005 Похожие работы
Просмотров: 4843 Комментариев: 12 Оценило: 12 человек Средний балл: 3.9 Оценка: 4     Скачать

Комсомольск-на-Амуре

KOST

&

AKRED

COST@AMURNET.RU


"Приобретение любого познания всегда полезно для ума, ибо он сможет отвергнуть бесполезное и сохранить хорошее. Ведь ни одну вещь нельзя ни любить, ни ненавидеть, если сначала ее не познать."

Леонардо да Винчи

Средства машинной графики, прежде доступные лишь крупным самолетостроительным объединениям (закрытые предприятия министерства авиационной промышленности), в настоящее время используются во многих областях проектирования и производства.

Независимо от способа выполнения чертежа - ручного, механизированного или автоматизированного - знание инженерной графики является фундаментом, на котором базируется инженерное образование, инженерное творчество и система создания технической документации.

Теоретические предпосылки инженерной графики основаны на положениях начертательной геометрии.

С момента возникновения геометрия развивалась, тесно переплетаясь с другими науками: математикой, механикой, физикой, а также оказывала влияние на разработку теоретических основ в технике и изобразительном искусстве.

Время и место возникновения геометрии не установлено.

Потребность в построении изображений по законам геометрии (проекционных чертежей, "projecere"- бросать вперед) возникла из практических задач строительства сооружений, укреплений, пирамид и т.д.), а на позднем этапе - из запросов машиностроения и техники.

Относительно точные сведения об уровне геометрических знаний в Древнем Египте сообщает папирус Ахмеса (измерение земельных участков, вычисление пирамид). Основателем геометрии в Греции считают финикиянина Фалеса Милетского, получившего образование в Египте (ок. 624-547гг. до н.э.). Он основал школу геометров, которая положила начало научной геометрии. Ученику Фалеса Пифагору Самосскому (ок. 580-500гг. до н.э.)принадлежат первые открытия в геометрии: теория несоизмеримости некоторых отрезков, например, диагонали квадрата с его стороной, теория правильных тел, теорема о квадрате гипотенузы прямоугольного треугольника. Преемник Пифагора Платон (427-347гг. до н.э.) ввел в геометрию аналитический метод, учение о геометрических местах и конические сечения. Существовавшая до сих пор элементарная геометрия была расширена и ее назвали трансцендентной .

Систематизировал основы геометрии, восполнил ее пробелы великий александрийский ученый Евклид (III в. до н.э.) в своем замечательном труде. "Начала" Евклида - первый серьезный учебник, по нему в течение двух тысячелетий учились геометрии. Современные учебники элементарной геометрии представляют собой переработку "Начал".

"Золотым веком" греческой геометрии называют эпоху, когда жили и творили математики Архимед (287-195 гг. до н.э.), Эрастофен (275-195гг. до н.э.), Аполлоний Пергский (250-190гг. до н.э.). Измерение криволинейных образов связано с именем Архимеда. Он указал методы измерения длины окружности, площади круга, сегмента параболы и спирали, объемов и поверхностей шара, других тел вращения и др. Это были главные дополнения к "Началам" Евклида. Трактатом о конических сечениях обессмертил свое имя Аполлоний. Трудами последнего, можно сказать, завершается классическая геометрия.

Расцвет классической культуры в средние века сменился застоем. В изобразительном искусстве не используются применявшиеся в древности сведения о перспективе. Глубокий кризис затянулся до эпохи Возрождения.

И только с возрождением строительства и искусств в эпоху Ренессанса в истории начертательной геометрии начинается новый период развития. В связи с развернувшимся строительством различных сооружений возродилось и расширилось применение употреблявшихся в античном мире элементов проекционных изображений. Наиболее бурно в это время развивались архитектура, скульптура и живопись в Италии, Нидерландах, Германии, что поставило художников и архитекторов этих стран перед необходимостью начать разработку учения о живописной перспективе на геометрической основе. Появились новые понятия: центр проецирования, картинная плоскость, линия горизонта, главные точки и т.д. Наблюдательная перспектива уже достигла своего высшего развития. Весомый вклад в развитие методов перспективных изображений внесли: итальянский зодчий Лоренцо Гиберти (1378-1455гг.) - он перенес принципы живописной перспективы на пластическое изображение в виде рельефа (в церковных сооружениях), итальянский теоретик искусств Леон Баттиста Альберти (1404-1472гг.) обогатил художественно-технический опыт мастеров-профессионалов теоретической разработкой основ перспективы, впервые упоминает о построении теней, Пиетра-делла-Франческа (1406-1492гг.) - рассматривал вопросы линейной перспективы, гениальный итальянский художник, ученый и инженер Леонардо да Винчи (1452-1519гг.), обладая в совершенстве знаниями линейной перспективы, дополнил построением ее на цилиндрических сводах, положив начало панорамной перспективе.

В развитие перспективы большой вклад внес немецкий ученый и гравер Альбрехт Дюрер (1471-1528гг.). В своей книге "Наставление" он разработал основы рисования, предложил графические способы построения большого числа плоских и некоторых пространственных кривых, оригинальные способы построения перспективы и тени предмета. Основателем теоретической перспективы по праву может считаться итальянский ученый Гвидо Убальди (1545-1607гг.). Работа Убальди "Шесть книг по перспективе" содержит решение почти всех основных задач перспективы.

Французский архитектор и математик Дезарг (1593-1662гг.) в 1636г. в сочинении "Общий метод изображения предметов в перспективе" впервые применил для построения перспективы метод координат Декарта, что послужило появлению нового аксонометрического метода в начертательной геометрии.

Зарождение аналитической геометрии связано с появлением метода координат. Французские математики Ферма (1601-1665гг.) и Декарт (1596-1650гг.) дали общие схемы аналитической функциональной зависимости геометрических соотношений и общие схемы изучения этой зависимости средствами алгебры и анализа. Выдающийся труд Исаака Ньютона (1642-1727гг.) в области бесконечно малых создал новую ветвь геометрии - дифференциальную . Методы приложения анализа бесконечно малых к геометрии характеризуются широкой общностью и находят применение в комплексе функций.

Аналитические и дифференциальные методы сложны в применении. "Геометрию надо строить геометрически" ("Geometria geometrice") - была поговорка среди математиков. Появилась еще одна ветвь геометрии - проективная , в основу которой положен метод проектирования, где нет понятий о числе и величине. Творцами нового направления следует считать французских математиков Понселе, Шаля, Мебиуса. Основу этой науки заложил упомянутый выше Дезарг. Он указал, что изображение предмета в ортогональных проекциях и линейной перспективе родственны с геометрической точки зрения [1].

Развитию "вольной перспективы" посвятил свои работы английский математик Тейлор (1685-1731гг.), разработавший способы решения основных позиционных задач и определения свойств оригинала по его перспективному изображению. Немецкий геометр Ламберт (1728-1777гг.) применил метод перспективы к графическоиу решению задач элементарной геометрии, используя свойства афинного соответствия (афинная геометрия). Ламберт решал и обратную задачу - реконструирование объекта по его чертежу, выполненному в центральной проекции.

Французский инженер Фрезье (1682-1773гг.) объединил работы предшественников в труде "Теория и практика разрезки камней и деревянных конструкций" (1738-39гг.), им были решены задачи построения конических сечений по усложненным данным. Однако строгой теории к представленному собранию отдельных приемов решения задач Фрезье не подвел.

Творцом ортогональных проекций и основоположником начертательной геометрии является французский геометр Гаспар Монж (1746-1818гг.). Знания, накопленные по теории и практике изображения пространственных предметов на плоскости, он систематизировал и обобщил, поднял начертательную геометрию на уровень научной дисциплины.

"…Нужно научить пользоваться начертательной геометрией" - говорил Г. Монж. Две главные цели имела новая наука:

1. Точное представление на чертеже, имеющем только два измерения, объектов трехмерных.

2. Выведение из точного описания тел всего, что следует из их формы и взаимного расположения.

С этой точки зрения начертательная геометрия - это язык, необходимый инженеру, создающему что-то новое, и тем, кто осуществляет инженерный проект.

Влюбленный в свое детище - начертательную геометрию, Монж писал: "Очарование, сопровождающее науку, может победить свойственное людям отвращение к напряжению ума и заставить их находить удовольствие в упражнении своего разума, - что большинству людей представляется утомительным и скучным занятием" [2].

В 1797г. Монж стал директором Политехнической школы. Он создал там ту постановку преподавания геометрии, которая и теперь существует в высших технических заведениях. Сильное впечатление производило то, что практические занятия проводились одновременно для 70 человек, которые работали над своими чертежными досками. "Маленький шедевр" - так Монж называл свою школу, давшую мировой науке много великих имен. Авторами учебников высшей школы стали Ампер, Пуассон, Кориолис, Беккерель и др., окончившие эту школу в разные годы. Когда Политехническая школа набрала силу, стала создаваться другая - Нормальная, которая предназначалась для подготовки уже не инженеров, а преподавателей. Профессорами этой школы были известные ученые Лагранж, Лаплас. Лекции, прочитанные Монжем, были стенографированы и позже опубликованы, сам он не интересовался опубликованием своих работ [3].

Методы Монжа не были противоположны анализу, а были его дополнением, связанным с практическими потребностями инженерного дела. Впервые ученый предложил рассматривать плоский чертеж в двух проекциях, как результат совмещения изображенной фигуры в одной плоскости - комплексный чертеж или эпюр Монжа.

В работе Г. Монжа "Начертательная геометрия"("Geometric Descriptive"), изданной в 1798г., решались задачи:

1. Применение теории геометрических преобразований.

2. Рассмотрение некоторых вопросов теории проекций с числовыми отметками.

3. Подробное исследование кривых линий и поверхностей, в частности применение вспомогательных плоскостей и сфер при построении линии пересечения поверхностей.

Появление начертательной геометрии было вызвано возраставшими потребностями в теории изображений.

Дальнейшее развитие начертательная геометрия получила в трудах многих ученых. Наиболее полное изложение идей Монжа по ортогональным проекциям дал Г. Шрейбер (1799-1871гг.), написавший "Учебник по начертательной геометрии" (по Монжу). Он обогатил начертательную геометрию изложением ее на проективной основе, применив идеи Шаля, Штаудта, Рейе, Штейнера и др., разработал теорию теней и сечений кривых поверхностей. Заметны труды ученых немецкой школы. Геометр Вильгельм Фидлер в книге "Начертательная геометрия", изданной в 1871г., в органической связи с геометрией проективной представил первый обширный курс дисциплины, стоящий на уровне современных требований. Прогрессивными в преподавании были лекции Эмиля Мюллера, продолжившего научное направление Фидлера. В работах А. Манигейма (1880г.) исследованы вопросы кинематического образования кривых линий и поверхностей в ортогональных проекциях. Обоснование теории аксонометрии дал Вейсбах, технические примеры применения аксонометрии показали братья Мейер.

Развивая теорию аксонометрии, профессор Академии изобразительных искусств и Строительной академии в Берлине Карл Польке (1810-1876гг.) в 1853г. открыл основную теорему аксонометрии. Доказательство этой теоремы в 1864г. вывел немецкий геометр Г.А. Шварц. Обобщенная теорема аксонометрии стала называться теоремой Польке - Шварца. Простое доказательство этой теоремы дал в 1917г. профессор Московского университета А.К. Власов. Московский геометр Н.А. Глаголев продолжил работы этого направления, он доказал, что теорема Польке - Шварца есть предельный случай более общей теоремы о параллельно-перспективном расположении двух тетраэдров. Привлекают работы австрийского геометра Эрвина Круппа, получившие развитие в трудах русских ученых Н.А. Глаголева, Н.Ф. Четверухина.

В середине XIX века зарождается и получает развитие начертательная геометрия многих измерений - многомерная геометрия. Итальянский математик Веронезе и голландский ученый Скаутте дают начало этому новому направлению. В России многомерная начертательная геометрия развивалась в связи с проблемами физико-химического анализа многокомпонентных структур (сплавов, растворов), состоящих из большого числа элементов. Вместо точек за основные элементы принимаются различные геометрические образы и строится бесчисленное множество плоских геометрических систем (системы параллельных отрезков, векторов, окружностей и т.д.).

К началу XX века относится зарождение векторно - моторного метода в начертательной геометрии, применяющегося в строительной механике, машиностроении. Этот метод разработан Б. Майором и Р. Мизесом, Б.Н. Горбуновым.

Развитие начертательной геометрии в нашей стране шло самобытными путями, его можно разделить на три периода. I период - до XIX века (Р. Санников, И.П. Кулибин, Д.В. Ухтомский, М.Ф. Казаков, В.И. Баженов и др.), II период - от начала XIX века до 1917 года. Впервые курс начертательной геометрии в 1810 году прочитан в Петербургском институте корпуса инженеров путей сообщения французским инженером К.И. Потье. Перевел курс на русский язык помощник Потье по институту Я.. А.. Севастьянов (1796-1849 гг.). III период - советский.

Развитие начертательной геометрии в России и применение ее методов в современных научных направлениях - это тема уже другого разговора.

ЛИТЕРАТУРА

1. Начертательная геометрия. //Под ред. Н.Ф. Четверухина.- М.: Высшая школа,- 1963.-с.420.

2. Г. Монж Начертательная геометрия./ Комментарии и редакция Д.И. Каргина.- М.: Изд-во АН СССР, 1974.-с.291.

3. В.П. Демьянов Геометрия и Марсельеза. М.: Знание, 1986.- с.254.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений21:45:09 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:37:28 24 ноября 2015
замечательный
ольга 15:46:04 08 февраля 2012Оценка: 5 - Отлично
спасибо !
Влад21:52:18 08 ноября 2009Оценка: 4 - Хорошо
Это просто З а м е ч а т е л ь н о!!!!!!!!!Большое спасибо, вы помогли мне сделать презентацию, надеюсь получить 5, СС ПП АА СС ИИ ББ ОО!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Оценка: Супер-пупер!!!!!!!!!!!!!!!!
18:08:58 09 октября 2009

Смотреть все комментарии (12)
Работы, похожие на Реферат: История развития начертательной геометрии
Развитие логического мышления учащихся при решении задач на построение
... ФЕДЕРАЦИИ БЛАГОВЕЩЕНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДПГОГИЧЕСКИЙ УНИВЕРСИТЕТ Физико-математический факультет Кафедра алгебры и геометрии РАЗВИТИЕ ЛОГИЧЕСКОГО ...
Американский педагог-психолог Д. Брунер пишет, что "...Быть может, самым поразительным примером такого подхода является первоначальное изложение евклидовой геометрии учащимися ...
... не использовались; мало уделялось внимания распространенным построениям, хотя обоснование их соответствовало программе по геометрии и целесообразность применения этих построений на ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 5864 Комментариев: 2 Похожие работы
Оценило: 3 человек Средний балл: 5 Оценка: неизвестно     Скачать
Измерения геометрических величин в курсе геометрии 7-9 классов
Оглавление Введение Глава 1. Психолого-педагогические и научно-методические основы изучения измерений геометрических величин в школе §1. Практическая ...
Выбор темы дипломной работы "Измерения геометрических величин в курсе геометрии 7 - 9 классов" обусловлен следующими факторами: идейно-содержательная линия "Измерения ...
В обучении геометрии этот принцип очень важен, так как в геометрии присутствует множество фигур, теорем и др., которые требуют демонстрации для прочного усвоения их свойств и ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 21680 Комментариев: 3 Похожие работы
Оценило: 2 человек Средний балл: 3.5 Оценка: неизвестно     Скачать
Использование компьютерных технологий в изучении наглядной геометрии
Введение Преподавание геометрии не может обойтись без наглядности. В тесной связи с наглядностью обучения находится и его практичность. Ведь именно из ...
Все эти замечательные характеристики геометрии делают её незаменимым элементом общей культуры, в равной степени нужным художнику и математику, инженеру и физику, биологу и ...
геометрические преобразования используются не только в курсе геометрии, но и в школьных курсах алгебры (построение графиков функций), физики (механика, оптика), химии ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 18888 Комментариев: 2 Похожие работы
Оценило: 4 человек Средний балл: 5 Оценка: неизвестно     Скачать
Философия математики
... Учреждение образования "Гомельский государственный университет имени Франциска Скорины" математический факультет кафедра алгебры и геометрии Философия ...
В этот период математика как наука закладывала основные части своего фундамента: аксиоматику геометрии, дедуктивный вывод, понятие числа и т.д. На развитие математики, конечно, в ...
Важную роль ученый отводил созданному им новому разделу геометрической науки - начертательной геометрии.
Раздел: Рефераты по математике
Тип: дипломная работа Просмотров: 2054 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
... учащихся в процессе внеклассной работы по математике в начальной школе
Министерство образования Российской Федерации Ярославский государственный педагогический университет имени К.Д. Ушинского Педагогический факультет ...
Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики, как геометрия.
Цель и характер проведения математических вечеров (утренников) несколько отличны от обычных целей и привычного образа действий, когда учащийся "занимается" математикой 3 решает ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 13662 Комментариев: 3 Похожие работы
Оценило: 4 человек Средний балл: 4.8 Оценка: неизвестно     Скачать
Философия и методология науки
Национальный Университет Узбекистана имени М. Улугбека Философский факультет Институт философии и права АН РУз. Учебно методический центр. Философия и ...
В пифагорейской математике наряду с доказательством ряда теорем, наиболее известной из которых является знаменитая теорема Пифагора, были осуществлены важные шаги к соединению ...
Основы неевклидовой геометрии казанского ученого Н. Н. Лобачевского, изложенные в его труде "О началах геометрии" и представленные в 1832 г. в Академию наук, были не восприняты в ...
Раздел: Рефераты по философии
Тип: учебное пособие Просмотров: 10755 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Особенности развития одарённых детей в процессе обучения математике в ...
Содержание Введение Глава 1. Психолого-педагогические основы развития одарённых учащихся в процессе обучения математике § 1. Понятия "одаренность" и ...
Известный математик А.Н. Колмогоров выделяет такие признаки математических способностей, как: а) способность умелого преобразования сложных буквенных выражений, нахождения удачных ...
Изменен подход к изложению геометрического материала - представлена наглядно-деятельностная геометрия, направленная на расширение геометрического кругозора учащихся.
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 21189 Комментариев: 3 Похожие работы
Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать
Графические работы на уроках стереометрии в средней школе
Оглавление Введение. 3 Глава 1. Проявление пространственного мышления в учебной деятельности. 5 1.1. Модель формирования пространственного образа. 7 1 ...
Например, при изображении пространственных или плоских геометрических конфигураций, в одних случаях к элементам можно отнести сами эти фигуры, в других - выделенные на чертеже их ...
При усвоении курса начертательной геометрии основные трудности возникают при необходимости изменить базу отсчета, выйти мысленно за пределы трехгранного угла, обращенного к ...
Раздел: Рефераты по педагогике
Тип: курсовая работа Просмотров: 2456 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Решение задач на построение в курсе геометрии основной школы как ...
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования "Вятский государственный ...
Геометрические построения являются весьма существенным элементом изучения геометрии.
Далее идут пункты "Геометрическое место точек", в котором вводится определение ГМТ и Теорема о ГМТ, равноудаленных от двух данных точек; а также "Метод геометрических мест ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 28110 Комментариев: 6 Похожие работы
Оценило: 4 человек Средний балл: 3.8 Оценка: неизвестно     Скачать
Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ ...
Кольцом называется числ. множ. На котором выполняются три опер-ии: слож, умнож, вычит. Полем наз. Числ множ. На котором выполняются 4 операции: слож ...
Парал-е проект-е применяется при изображении плоских и пространственных фигур на плоскости.Пусть поектируемая фигура F есть некоторая плоскость очевидны утверждения: точка плоск-и ...
Понятие теоремы наиболее выпукло выявляется в школьном курсе геометрии, однако теоремы есть и в алгебре, хотя они редко носят такое название.
Раздел: Рефераты по математике
Тип: реферат Просмотров: 3492 Комментариев: 3 Похожие работы
Оценило: 3 человек Средний балл: 3 Оценка: неизвестно     Скачать

Все работы, похожие на Реферат: История развития начертательной геометрии (3593)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150929)
Комментарии (1842)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru