Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Топик: On the problem of crystal metallic lattice in the densest packings of chemical elements valency.The electrons in zone of conductivity.

Название: On the problem of crystal metallic lattice in the densest packings of chemical elements valency.The electrons in zone of conductivity.
Раздел: Топики по английскому языку
Тип: топик Добавлен 05:31:10 03 июля 2005 Похожие работы
Просмотров: 15 Комментариев: 5 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Dear Sirs.

Thank you for your assistance.

ON THE PROBLEM OF CRYSTAL METALLIC LATTICE IN THE DENSEST PACKINGS OF CHEMICAL ELEMENTS

Yours faithfully, Н.G FILIPENKА

http://home.ural.ru/~filip/

Grodno

Abstract

The literature generally describes a metallic bond as the one formed by means of mutual bonds between atoms' exterior electrons and not possessing the directional properties. However, attempts have been made to explain directional metallic bonds, as a specific crystal metallic lattice.

This paper demonstrates that the metallic bond in the densest packings (volume-centered and face-centered) between the centrally elected atom and its neighbours in general is, probably, effected by 9 (nine) directional bonds, as opposed to the number of neighbours which equals 12 (twelve) (coordination number).

Probably, 3 (three) "foreign" atoms are present in the coordination number 12 stereometrically, and not for the reason of bond. This problem is to be solved experimentally.

Introduction

At present, it is impossible, as a general case, to derive by means of quantum-mechanical calculations the crystalline structure of metal in relation to electronic structure of the atom. However, Hanzhorn and Dellinger indicated a possible relation between the presence of a cubical volume-centered lattice in subgroups of titanium, vanadium, chrome and availability in these metals of valent d-orbitals. It is easy to notice that the four hybrid orbitals are directed along the four physical diagonals of the cube and are well adjusted to binding each atom to its eight neighbours in the cubical volume-centered lattice, the remaining orbitals being directed towards the edge centers of the element cell and, possibly, participating in binding the atom to its six second neighbours /3/p. 99.

Let us try to consider relations between exterior electrons of the atom of a given element and structure of its crystal lattice, accounting for the necessity of directional bonds (chemistry) and availability of combined electrons (physics) responsible for galvanic and magnetic properties.

According to /1/p. 20, the number of Z-electrons in the conductivitiy zone has been obtained by the authors, allegedly, on the basis of metal's valency towards oxygen, hydrogen and is to be subject to doubt, as the experimental data of Hall and the uniform compression modulus are close to the theoretical values only for alkaline metals. The volume-centered lattice, Z=1 casts no doubt. The coordination number equals 8.

The exterior electrons of the final shell or subcoats in metal atoms form conductivity zone. The number of electrons in the conductivity zone effects Hall's constant, uniform compression ratio, etc.

Let us construct the model of metal - element so that external electrons of last layer or sublayers of atomic kernel, left after filling the conduction band, influenced somehow pattern of crystalline structure (for example: for the body-centred lattice - 8 ‘valency’ electrons, and for volume-centered and face-centred lattices - 12 or 9).

ROUGH, QUALITATIVE MEASUREMENT OF NUMBER OF ELECTRONS IN CONDUCTION BAND OF METAL - ELEMENT. EXPLANATION OF FACTORS, INFLUENCING FORMATION OF TYPE OF MONOCRYSTAL MATRIX AND SIGN OF HALL CONSTANT.

(Algorithm of construction of model)

The measurements of the Hall field allow us to determine the sign of charge carriers in the conduction band. One of the remarkable features of the Hall effect is, however, that in some metals the Hall coefficient is positive, and thus carriers in them should, probably, have the charge, opposite to the electron charge /1/. At room temperature this holds true for the following: vanadium, chromium, manganese, iron, cobalt, zinc, circonium, niobium, molybdenum, ruthenium, rhodium, cadmium, cerium, praseodymium, neodymium, ytterbium, hafnium, tantalum, wolfram, rhenium, iridium, thallium, plumbum /2/. Solution to this enigma must be given by complete quantum - mechanical theory of solid body.

Roughly speaking, using the base cases of Born- Karman, let us consider a highly simplified case of one-dimensional conduction band. The first variant: a thin closed tube is completely filled with electrons but one. The diameter of the electron roughly equals the diameter of the tube. With such filling of the area at local movement of the electron an opposite movement of the ‘site’ of the electron, absent in the tube, is observed, i.e. movement of non-negative sighting. The second variant: there is one electron in the tube - movement of only one charge is possible - that of the electron with a negative charge. These two opposite variants show, that the sighting of carriers, determined according to the Hall coefficient, to some extent, must depend on the filling of the conduction band with electrons. Figure 1.

On the problem of crystal metallic lattice in the densest packings of chemical elements valency.The electrons in zone of conductivity.
On the problem of crystal metallic lattice in the densest packings of chemical elements valency.The electrons in zone of conductivity.
On the problem of crystal metallic lattice in the densest packings of chemical elements valency.The electrons in zone of conductivity.

а) б)

Figure 1. Schematic representation of the conduction band of two different metals. (scale is not observed).

a) - the first variant;

b) - the second variant.

The order of electron movement will also be affected by the structure of the conductivity zone, as well as by the temperature, admixtures and defects. Magnetic quasi-particles, magnons, will have an impact on magnetic materials.

Since our reasoning is rough, we will further take into account only filling with electrons of the conductivity zone. Let us fill the conductivity zone with electrons in such a way that the external electrons of the atomic kernel affect the formation of a crystal lattice. Let us assume that after filling the conductivity zone, the number of the external electrons on the last shell of the atomic kernel is equal to the number of the neighbouring atoms (the coordination number) (5).

The coordination number for the volume-centered and face-centered densest packings are 12 and 18, whereas those for the body-centered lattice are 8 and 14 (3).

The below table is filled in compliance with the above judgements.

Element

R H . 1010

(cubic metres /K)

Z

(number)

Z kernel

(number)

Lattice type

Natrium

Na

-2,30

1

8

body-centered

Magnesium

Mg

-0,90

1

9

volume-centered

Aluminium Or

Al

-0,38

2

9

face-centered

Aluminium

Al

-0,38

1

1 2

face-centered

Potassium

K

-4,20

1

8

body-centered

Calcium

Ca

-1,78

1

9

face-centered

Calciom

Ca

T=737K

2

8

body-centered

Scandium Or

Sc

-0,67

2

9

volume-centered

Scandium

Sc

-0,67

1

18

volume-centered

Titanium

Ti

-2,40

1

9

volume-centered

Titanium

Ti

-2,40

3

9

volume-centered

Titanium

Ti

T=1158K

4

8

body-centered

Vanadium

V

+0,76

5

8

body-centered

Chromium

Cr

+3,63

6

8

body-centered

Iron or

Fe

+8, 00

8

8

body-centered

Iron

Fe

+8,00

2

14

body-centered

Iron or

Fe

Т =1189K

7

9

face-centered

Iron

Fe

Т=1189K

4

12

face-centered

Cobalt or

Co

+3,60

8

9

volume-centered

Cobalt

Co

+3 ,60

5

12

volume-centered

Nickel

Ni

-0,60

1

9

face-centered

Copper or

Cu

-0,52

1

18

face-centered

Copper

Cu

-0,52

2

9

face-centered

Zink or

Zn

+0,90

2

18

volume-centered

Zink

Zn

+0,90

3

9

volume-centered

Rubidium

Rb

-5,90

1

8

body-centered

Itrium

Y

-1,2 5

2

9

volume-centered

Zirconium or

Zr

+0,21

3

9

volume-centered

Zirconium

Zr

Т=11 35К

4

8

body-centered

Niobium

Nb

+ 0,7 2

5

8

body-centered

Molybde-num

Mo

+1,91

6

8

body-centered

Ruthenium

Ru

+22

7

9

volume-centered

Rhodium Or

Rh

+0,48

5

12

face-centered

Rhodium

Rh

+0 ,48

8

9

face-centered

Palladium

Pd

-6,80

1

9

face-centered

Silver or

Ag

-0,90

1

18

face-centered

Silver

Ag

-0,90

2

9

face-centered

Cadmium or

Cd

+0,67

2

18

volume-centered

Cadmium

Cd

+0,67

3

9

volume-centered

Caesium

Cs

-7 ,80

1

8

body-centered

Lanthanum

La

-0,80

2

9

volume-centered

Cerium or

Ce

+1,92

3

9

face-centered

Cerium

Ce

+1,92

1

9

face-centered

Praseodymium or

Pr

+0,71

4

9

volume-centered

Praseodymium

Pr

+0,71

1

9

volume-centered

Neodymium or

Nd

+0,97

5

9

volume-centered

Neodymium

Nd

+0,97

1

9

volume-centered

Gadolinium or

Gd

-0,95

2

9

volume-centered

Gadolinium

Gd

T=1533K

3

8

body-centered

Terbium or

Tb

-4,30

1

9

volume-centered

Terbium

Tb

Т= 1560К

2

8

body-centered

Dysprosium

Dy

-2,7 0

1

9

volume-centered

Dysprosium

Dy

Т= 1657К

2

8

body-centered

Erbium

Er

-0,341

1

9

volume-centered

Thulium

Tu

-1,80

1

9

volume-centered

Ytterbium or

Yb

+3,77

3

9

face-centered

Ytterbium

Yb

+ 3,77

1

9

face-centered

Lutecium

Lu

-0,535

2

9

volume-centered

Hafnium

Hf

+0,43

3

9

volume-centered

Hafnium

Hf

Т=2050К

4

8

body-centered

Tantalum

Ta

+0,98

5

8

body-centered

Wolfram

W

+0,856

6

8

body-centered

Rhenium

Re

+ 3,15

6

9

volume-centered

Osmium

Os

< 0

4

12

volume centered

Iridium

Ir

+3,18

5

12

face-centered

Platinum

Pt

-0,194

1

9

face-centered

Gold or

Au

-0,69

1

18

face-centered

Gold

Au

-0,69

2

9

face-centered

Thallium or

Tl

+0,24

3

18

volume-centered

Thallium

Tl

+0,2 4

4

9

volume-centered

Lead

Pb

+0,09

4

18

face-centered

Lead

Pb

+ 0,09

5

9

face-centered

Where Rh is the Hall’s constant (Hall’s coefficient)

Z is an assumed number of electrons released by one atom to the conductivity zone.

Z kernel is the number of external electrons of the atomic kernel on the last shell.

The lattice type is the type of the metal crystal structure at room temperature and, in some cases, at phase transition temperatures (1).

Conclusions

In spite of the rough reasoning the table shows that the greater number of electrons gives the atom of the element to the conductivity zone, the more positive is the Hall’s constant. On the contrary the Hall’s constant is negative for the elements which have released one or two electrons to the conductivity zone, which doesn’t contradict to the conclusions of Payerls. A relationship is also seen between the conductivity electrons (Z) and valency electrons (Z kernel) stipulating the crystal structure.

The phase transition of the element from one lattice to another can be explained by the transfer of one of the external electrons of the atomic kernel to the metal conductivity zone or its return from the conductivity zone to the external shell of the kernel under the influence of external factors (pressure, temperature).

We tried to unravel the puzzle, but instead we received a new puzzle which provides a good explanation for the physico-chemical properties of the elements. This is the “coordination number” 9 (nine) for the face-centered and volume-centered lattices.

This frequent occurrence of the number 9 in the table suggests that the densest packings have been studied insufficiently.

Using the method of inverse reading from experimental values for the uniform compression towards the theoretical calculations and the formulae of Arkshoft and Mermin (1) to determine the Z value, we can verify its good agreement with the data listed in Table 1.

The metallic bond seems to be due to both socialized electrons and “valency” ones – the electrons of the atomic kernel.

Literature:

1) Solid state physics. N.W. Ashcroft, N.D. Mermin. Cornell University, 1975

2) Characteristics of elements. G.V. Samsonov. Moscow, 1976

3) Grundzuge der Anorganischen Kristallchemie. Von. Dr. Heinz Krebs. Universitat Stuttgart, 1968

4) Physics of metals. Y.G. Dorfman, I.K. Kikoin. Leningrad, 1933

5) What affects crystals characteristics. G.G.Skidelsky. Engineer № 8, 1989

Appendix 1

Metallic Bond in Densest Packing (Volume-centered and face-centered)

It follows from the speculations on the number of direct bonds ( or pseudobonds, since there is a conductivity zone between the neighbouring metal atoms) being equal to nine according to the number of external electrons of the atomic kernel for densest packings that similar to body-centered lattice (eight neighbouring atoms in the first coordination sphere). Volume-centered and face-centered lattices in the first coordination sphere should have nine atoms whereas we actually have 12 ones. But the presence of nine neighbouring atoms, bound to any central atom has indirectly been confirmed by the experimental data of Hall and the uniform compression modulus (and from the experiments on the Gaase van Alfen effect the oscillation number is a multiple of nine.

Consequently, differences from other atoms in the coordination sphere should presumably be sought among three atoms out of 6 atoms located in the hexagon. Fig.1,1. d, e shows coordination spheres in the densest hexagonal and cubic packings.

On the problem of crystal metallic lattice in the densest packings of chemical elements valency.The electrons in zone of conductivity.

Fig.1.1. Dense Packing.

It should be noted that in the hexagonal packing, the triangles of upper and lower bases are unindirectional, whereas in the hexagonal packing they are not unindirectional.

Literature:

Introduction into physical chemistry and chrystal chemistry of semi-conductors. B.F. Ormont. Moscow, 1968.

Appendix 2

Theoretical calculation of the uniform compression modulus (B).

B = (6,13/(rs |ao ))5 * 1010 dyne/cm2

Where B is the uniform compression modulus

аo is the Bohr radius

rs – the radius of the sphere with the volume being equal to the volume falling at one conductivity electron.

rs = (3/4 pn ) 1/3

Where n is the density of conductivity electrons.

Table 1. Calculation according to Ashcroft and Mermin

Element

Z

rs /ao

theoretical

calculated

Cs

1

5.62

1.54

1.43

Cu

1

2.67

63.8

134.3

Ag

1

3.02

34.5

99.9

Al

3

2.07

228

76.0

Table 2. Calculation according to the models considered in this paper

Element

Z

rs /ao

theoretical

calculated

Cs

1

5.62

1.54

1.43

Cu

2

2.12

202.3

134.3

Ag

2

2.39

111.0

99.9

Al

2

2.40

108.6

76.0

Of course, the pressure of free electrons gases alone does not fully determine the compressive strenth of the metal, nevertheless in the second calculation instance the theoretical uniform compression modulus lies closer to the experimental one (approximated the experimental one) this approach (approximation) being one-sided. The second factor the effect of “valency” or external electrons of the atomic kernel, governing the crystal lattice is evidently required to be taken into consideration.

Literature:

Solid state physics. N.W. Ashcroft, N.D. Mermin. Cornell University, 1975

Grodno

March 1996 Н.G. Filipenkа

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений22:39:17 18 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
15:54:49 24 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:29:23 24 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
09:46:45 24 ноября 2015
редиска chemical elements for nanoscience.
геннадий22:19:36 18 ноября 2008

Работы, похожие на Топик: On the problem of crystal metallic lattice in the densest packings of chemical elements valency.The electrons in zone of conductivity.

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151216)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru