Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Задачі нелінійного програмування. Деякі основні методи їх розвязування та аналізу

Название: Задачі нелінійного програмування. Деякі основні методи їх розвязування та аналізу
Раздел: Рефераты по информатике
Тип: реферат Добавлен 20:36:45 05 марта 2011 Похожие работы
Просмотров: 13 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Реферат на тему:

Задачі нелінійного програмування. Деякі основні методи їх розв’язування та аналізу.


План.

1. Метод Франка-Вулфа.

2. Приклади розв’язування задач.

3. Література

Деякі з основних методів розв’язування задач НЛП.

1. Метод Франка –Вулфа . Нехай потрібно найти максимальне значення вогнутой функції

(57)

при умовах : (58)

(59)

Характерною особливістю цієї задачі являється то , що її система обмеження вміщує тільки лінійні нерівності . Ця особливість являє основний для заміни в межах досліджуваної точки нелінійної цільової функції лінійною , завдяки чому розв’язок даної задачі зводиться до послідовного розв’язку задач лінійного програмування.

Процес найдення розв’язку задачі начинають з оприділення точки , принадлежавшої області допустимих розв’язків задачі.

Нехай ця точка , тоді в цій точці вираховують градієнт функції (57)

і будують лінійну функцію

(60)

Потім знаходять максимальне значення цієї функції при обмеженнях (58) і (59). Нехай рішення даної задачі визначається точкою . Тоді за новий допустимий розв’язок даної задачі приймають координати точки

(61)

де -- деяке число , називають кроком вирахуваним і закінченням між нулем і одиницею . Це число беруть довільно чи визначають таким способом , щоб значення функції в точці

залежавши від , було максимальним . Для цього необхідно найти рішення рівності і вибрати його найменший корінь . Якщо його значення більше одиниці , то слідує покласти . Після визначення числа находять координати точки вираховують значення цільової функції в ній і виясняють необхідність переходу до нової точки . Якщо така необхідність має , то вираховують в точці градієнт цільової функції , переходять до даної задачі лінійного програмування і находять її розв’язок . Визначають координати точки і досліджують необхідність проведення подальших обчислень . Після кінцевого числа отримують з необхідною точністю розв’язок даної задачі .

Отже, процес находження розв’язків задачі (57) – (59) методом Франка – Вулфа включає наступні етапи :

1. Визначають даний допустимий розв’язок задачі .

2. Находять градієнт функції (57) в точці допустимого розв’язку .

3. Будують функцію (60) і находять її максимальне значення при умовах (58) і (59) .

4. Визначають крок обчислень .

5. По формулам (61) находять компоненти нового допустимого розв’язку .

6. Провіряють необхідність переходу до наступного допустимого розв’язку . У випадку необхідності переходять до етапу 2 , в поганому випадку найдене прийняте розв’язок даної задачі .

3.27. Методом Франка – Вулфа найти розв’язок задачі 3.22. , забезпеченої в певному максимальному значенні функції

(62)

при умовах

(63) (64)

Розв’язок . Найдем градієнт функції

і в якості даного допустимого розв’язку задачі візьмемо точку а в якості критерія оцінки якості одержимо розв’язок – нерівності де .

1. Ітерація . В точці градієнт .Знаходимо максимальне значення функції

(65)

при умовах (63) і (64)

(66)

(67)

Задача (65)—(67) має оптимальний план .

Найдемо новий допустимий розв’язок даної задачі по формулі (61):

, де . (68)

Підставимо замість і їх значення , отримаємо

(69)

Знайдемо тепер число . Підкладемо в рівність (62) замість і

із значення у відповідності з відношенням (69)

,

знайдемо подібну цій функції по і прирівняємо її нулю :

.Розв’язуючи цю рівність , отримаємо .

Оскільки найдене значення заключне між 0 і 1 , приймаючи його за величину кроку .Таким образом ,

.

2. Ітерація . Градієнт цільової функції даної задачі в точці є . Находимо максимальне значення функції при умовах (63) і (64) . Рішення являється .

Оприділяєм тепер .Останню рівність перепишемо наступним образом :

Підкладемо тепер в функцію (62) замість і їх значення у відношенні з відношенням (70) , отримаємо

звідки . Прирівняємо нулю і розв’язуючи отримаємо рівність , знаходимо . Таким образом ,

т.е. .

3. Ітерація . Градієнт функції f в точці є . Находимо максимальне значення функції при умовах (63) і (64). Розв’язком буде .

Знайдемо . Маємо

Розв’язуючи рівність , находимо . Слідуючи , ,, .

Таким образом , являється задовільним розв’язком даної задачі . Дана точка находиться достатньо близько до точки максимального значення цільової функції , найденої при розв’язку цієї задачі в п. 3.3. Задав меншу величину , можна було , зробивши доповнюючи приближення , ще ближче підійти до точки максимального значення цільової функції.


Література.

1. Наконечний С.І., Савіна С.С. Математичне програмування: Навч. посіб. – К.:КНЕУ, 2003.- 452 с.

2. Барвінський А.Ф та ін. Математичне програмування: Навчальний посібник / А.Ф. Барвінський, І.Я. Олексів, З.І. Крупка, І.О. Бобик, І.І. Демків, Р.І. Квіт, В.В. Кісілевич – Львів: Національний університет “Львівська політехніка” (Інформаційно-видавничий центр “Інтелект+” Інститут післядипломної освіти) “Інтелект - Захід”, 2004. – 448 с.

3. Акулич М.Л. Математичиское програмирование в примерах и задачах: Учебное пособие для студентов экономических специальних вузов. – Вища школа, 1985-319с.,ст.270-274.

4. Вітлінський В.В., Наконечний С.І., Терещенко Т.О. Математичне програмування: Навч. – метод. посібник для самост. вивч. дисц. – К.: КНЕУ, 2001. – 248 с.

5. Математичне програмування (методичний посібник для студентів економічних спеціальностей)/Укладачі: Лавренчук В.П., Веренич І.І., Готинчан Т.І., Дронь В.С., Кондур О.С., - Чернівці: „Рута”, 1998.-168 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений09:14:54 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
12:18:35 29 ноября 2015

Работы, похожие на Реферат: Задачі нелінійного програмування. Деякі основні методи їх розвязування та аналізу

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150043)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru