Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Наближене обчислення означених інтегралів формули прямокутників трапецій Сімпсона

Название: Наближене обчислення означених інтегралів формули прямокутників трапецій Сімпсона
Раздел: Рефераты по математике
Тип: реферат Добавлен 06:01:00 19 января 2011 Похожие работы
Просмотров: 7 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Пошукова робота на тему:

Наближене обчислення означених інтегралів: формули прямокутників, трапецій, Сімпсона.

П лан

  • Наближене обчислення означених інтегралів
  • Формула прямокутників
  • Формула трапецій
  • Формула парабол (Сімпсона)

Наближені методи обчислення інтегралів

В усіх випадках, коли розглянуті раніше методи знаходження первісних, не приводять до мети внаслідок того, що інтеграл не виражається через елементарні функції, і особливо тоді, коли підінтегральна функція задана таблицею (або графіком), доводиться повертатися до означення інтеграла як границі інтегральної суми. На основі цього існує ряд методів наближеного обчислення визначених інтегралів. Тут будуть розглянуті деякі з методів – метод прямокутників, трапецій і Сімпсона як найпоширеніші і широко застосовуваний для програмування обчислень на ПК.

1. Формули прямокутників

Нехай на відрізку задана неперервна функція . Потрібно обчислити інтеграл

Розіб’ємо відрізок на рівних частин точками довжина кожної з яких дорівнює Через позначимо значення функції в точках і складемо суми

або

Кожна з цих сум є інтегральною сумою для на відрізку і тому наближено виражають визначений інтеграл:

(9.8)

(9.8/ )

Ці формули називаються формулами прямокутників. З рис.9.3 видно, що якщо додатна і зростаюча функція, то формула (9.8) виражає площу ступінчатої фігури, що складена із “ внутрішніх” прямокутників, а формула (9.8/ ) – площу фігури, що складена із “зовнішніх” прямокутників. Похибка при цьому буде тим меншою, чим більше число (тобто чим менший крок поділу ).

2. Формула трапецій

Очевидно, що можна отримати більш точне значення інтеграла, якщо дану криву замінити не ступінчатою лінією, як це мало місце у формулі прямокутників, а вписаною ломаною (рис.9.4). Тоді площа криволінійної трапеції, обмеженої лініями і заміниться площами трапецій, обмежених зверху хордами Оскільки площа

Рис.9.3 Рис.9.4

першої трапеції дорівнює другої - і т.д.,

то

або

(9.9)

Формула (9.9) називається формулою трапецій . Число вибирається довільним, але чим більшим це число буде, а значить, крок меншим, тим з більшою точністю сума в правій частині наближеної рівності (9.9) буде давати значення інтеграла.

3. Формула парабол (Сімпсона)

Метод Сімпсона найпоширеніший і широко застосовний для програмування. Його суть полягає в наближенні підінтегральної функції відрізками парабол.

Отже, розглянемо спочатку інтеграл , де - парабола; - деякі параметри (або числа).

Тоді

Нехай тепер маємо інтеграл , де - неперервана на інтервалі функція. Якщо інтервал розбити на рівних частинок точками , то заданий інтеграл можна записати так:

Якщо на кожному з інтегралів для проміжків функцію замінимо параболами , що проходять через точки ,то одержимо

Через те, що , формула матиме вигляд:

або

(9.10)

Формула (9.10) називається формулою парабол або Сімпсона. Доведено, що похибка обчислень за формулою Сімпсона є такою:

(9.11)

Проте цією оцінкою похибки можна користуватись, якщо є хоча б чотири рази диференційованою. Але якщо навіть чотири рази диференційована, то часто оцінка четвертої похідної може виявитись досить важкою. Тому на практиці часто користуються таким методом: обчислюють інтеграл, розділяючи інтервал, визначений границями інтегрування, один раз на рівних частин, а другий раз на частин. Якщо одержані двоє значень інтеграла мало відрізняються, то результат можна вважати прийнятним. Порівнюючи їх можна оцінити і точність обчислень.

Приклад. Обчислити з точністю до 0,001 інтеграл

Р о з в ’ я з о к.За формулою (9.10) маємо:

при при

-0,5 0,0000 -0,5 0,00000 0,05 0,0371
-0,4 -0,1203 -0,45 -0,0946 0,10 0,0772
-0,3 -0,1303 -0,40 -0,1203 0,15 0,1200
-0,2 -0,1081 -0,35 -0,1304 0,20 0,1652
-0,1 -0,630 -0,30 -0,1303 0,25 0,2122
0 0,0000 -0,25 -0,1204 0,30 0,2607
0,1 0,0772 -0,20 -0,1081 0,35 0,3103
0,2 0,1652 -0,15 -0,0881 0,40 0,3610
0,3 0,2607 -0,10 -0,0630 0,45 0,4121
0,4 0,36098 -0,05 -0,0335 0,50 0,4637
0,5 0,46365 0,00 0,0000

Отже, тому Формулою (9.10) для оцінки похибки скористатися неможливо, бо вже перша похідна підінтегральної функції при перетворюється на нескінченність.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:49:45 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
12:05:59 29 ноября 2015

Работы, похожие на Реферат: Наближене обчислення означених інтегралів формули прямокутників трапецій Сімпсона

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(151046)
Комментарии (1843)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru