Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Египетские дроби

Название: Египетские дроби
Раздел: Рефераты по математике
Тип: реферат Добавлен 19:30:48 26 июня 2011 Похожие работы
Просмотров: 508 Комментариев: 4 Оценило: 2 человек Средний балл: 2 Оценка: неизвестно     Скачать

Египетские дроби

Одним из древнейших письменных документов человечества яв­ляется папирус Райнда, датируемый ориентировочно 1600 г. до н.э. Замечательно, что это также древнейшее математическое сочинение. Древние египтяне записывали рациональные дроби как суммы чи­сел, обратных натуральным: 2/5 = 1/3 + 1/15, 6 / 7 = 1/2 + 1/3 + 1/42 и т. д. Папирус содержит математические задачи и таблицы, пред­ставляющие дроби 2/(2п+ 1), со знаменателями от 5 до 331 в виде суммы дробей с числителем 1.

Дроби с числителем единица мы будем называть египетскими дробями, а разложение рационального числа в сумму попарно раз­личных египетских дробей — египетской суммой. Мы будем рас­сматривать только положительные рациональные числа.

1.1. а) Для каких натуральных N единицу можно представить в виде египетской суммы из N слагаемых?

б) Существуют ли египетские разложения единицы, в которых все знаменатели нечетны?

1.2. а) Докажите, что любое положительное рациональное число т/п может быть представлено в виде египетской суммы.

6} Докажите, что если т < п 2 , то существует египетское разло­жение дроби т / п, в котором не более 2 m - 1 слагаемых.

в) Докажите, что всякую дробь т/п < 1 можно разложить в сумму не более min(m, log2 тп ) различных египетских дробей.

г) Докажите, что всякую дробь т/п < 1 можно разложить в сум­му различных египетских дробей со знаменателями, не превосходя­щими п 2 .

1.3. Докажите, что при каждом s уравнение

в натуральных числах имеет лишь конечное множество решений.

1.4 . а) Докажите, что для любого натурального п на интервале (0,1) существует рациональное число, не представимое в виде египетской суммы с не более, чем п слагаемыми.

б) Пусть М n — множество рациональных чисел из интервала (0,1), представимых в виде суммы не более чем nегипетских дробей (не обязательно различных). Докажите, что при любом n множест­во М п нигде не плотно.

Другими словами, для любого n и любого промежутка (a,b)Ì (0,1) найдется такой интервал (с,d) Ì (а,b), в котором все рацио­нальные числа не представимы в виде суммы не более nегипетских дробей.

1.5. а) Может ли сумма нескольких последовательных египетских дробей (знаменатели которых являются последовательными нату­ральными числами) быть целым числом?

б) Тот же вопрос, но знаменатели должны являться последова­тельными нечетными натуральными числами.

в) Тот же вопрос, но знаменатели должны образовывать произ­вольную арифметическую прогрессию.

г) Докажите, что равенство

возможно лишь при a = n + 1, m =1

1.6. Пусть fn — числа Фибоначчи. Докажите, что при всех т, п

1.7. Верно ли, что для каждой правильной дроби вида , 2 £n£18 существует египетское разложение со знаменателями не превосходящими 95?

Малые числители

1.8. Найдите египетское разложение сумму наименьшего числа слагаемых.

1.9. Докажите, что представление числа , где n не делится на 3, в виде суммы двух египетских дробей возможно в том и только том случае, когда n имеет делитель вида Зn + 2.

1.10. Пусть а n - число элементов множества

Докажите, что для каждого e > 0 при достаточно больших nan < ne .

Открытая проблема (Erdos, Straus). Уравнение

(1)

при n > 3 разрешимо в натуральных числах. Вычислительный экс­перимент для n < 108 подтверждает эту гипотезу.

1.11. Докажите, что уравнение (1) разрешимо при всех n, кроме, быть может, n = 1,121,169,289, 361,529 (mod 840).

1.12. Докажите, что число 1 нельзя, а число 1/2 можно предста­вить в виде египетской суммы со знаменателями, являющимися точ­ными квадратами.

Способы разложения на египетские дроби

В этом разделе мы рассматриваем различные способы получить представление рационального числа в виде египетской суммы.

Определение 1. Жадный алгоритм. Выберем наибольшую дробь вида , которая не превосходит . Потом возьмем наи­большую дробь вида, n 2 > n 1 для которой . По­том возьмем наибольшую дробь вида , n 3 > n ­2 , для которой

и т.д.

Если на каждом шаге мы выбираем нечетные n i , то полученный метод будем называть нечетным жадным алгоритмом.

Определение 2. Разрешение конфликтов. Пусть < 1. Поло­жим

Когда несколько слагаемых в разложении совпадают, будем исправлять эту "неправильную" ситуацию. Каж­дый шаг алгоритма состоит в замене каких-то слагаемых другими. Будем рассматривать следующие разновидности этого метода.

Метод парных замен .

Метод подразбиения . Если какое-либо слагаемое встречается больше одного раза, выполним одну замену,

Определение 3 . Метод двоичного разложения. Пусть < 1. Разложим число в бесконечную двоичную дробь. Она будет сме­шанной периодической. Пусть период имеет длину n. Можно счи­тать, что начальная непериодическая часть имеет длину больше n. Каждой единице, предшествующей первому периоду, соответствует дробь вида . Каждой единице из периода соответствует египет­ская дробь .

Аналогичный метод работает и в системах с другими основания­ми, например, в шестиричной. Проблемы и решаются просто: , . В десятичной системе счисления этот метод не­посредственно на работает, поскольку не удается представить числа 4, 7, 8, 9 в виде суммы различных делителей числа 10. Назовем чис­ло N практичным, если все натуральные числа, не превосходящие N (в случае нечетного N — все кроме 2), можно представить в виде суммы нескольких (быть может, одного) различных делителей чис­ла N. Пример четного практичного числа — 6, пример нечетного практичного числа — 945. Благодаря разложению из задачи 1.8, мы можем с минимальными изменениями распространить метод двоич­ного разложения на случай, когда основание системы счисления — практичное число.

Определение 4 Метод двоичного остатка. Для разложения числа а / b, ( b¹ 2n ) в египетскую сумму выберем число p = 2 k > b. Разделим аp на b с остатком: ар = sb + г. Разложим r/p, s/p в

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:36:43 19 марта 2016
просто ужасный реферат. и очень сложный для 6 классов
19:21:53 18 марта 2016
просто ужасный реферат. и очень сложный для 6 классов
19:20:28 18 марта 2016Оценка: 2 - Плохо
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:58:56 29 ноября 2015

Работы, похожие на Реферат: Египетские дроби

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150438)
Комментарии (1831)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru