Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Волны в упругой среде. Волновое уравнение

Название: Волны в упругой среде. Волновое уравнение
Раздел: Рефераты по физике
Тип: реферат Добавлен 16:06:34 25 марта 2011 Похожие работы
Просмотров: 516 Комментариев: 4 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНЖЕНЕРНОЙ ЭКОЛЛОГИИ.

МЦВО.

РЕФЕРАТ ПО ФИЗИКЕ

на тему

«Волны в упругой среде. Волновое уравнение».

Выполнил:

студент группы М-13

машиностроительного факультета

Калинин Валерий.

Преподаватель:

Степанюк Владислав Николаевич.

г. Домодедово.

1999 год.


СОДЕРЖАНИЕ.

стр.

Глава I. Волна.

§ 1. Понятие упругой волны. Поперечные и продольные волны. .................................... 2

§ 2. Фронт волны. Длина волны. ........................................................................................ 3

Глава II. Волновое уравнение.

§ 1. Математические сведения. ........................................................................................... 4

§ 2. Упругие волны в стержне.

1) волновое уравнение. .................................................................................................. 5

§ 3. Упругие волны в газах и жидкостях.

1) волновое уравнение; .................................................................................................. 8

2) случай идеального газа .............................................................................................. 9

Список использованной литературы. ............................................................................... 11

Практические задания.

Задача №1. ............................................................................................................................. 12

Задача №2. ............................................................................................................................. 13

Задача №3. ............................................................................................................................. 14


Глава I.

Волна.

§ 1. Понятие волны. Поперечные и продольные волны.

Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью v . Процесс распространения колебаний в пространстве называется волной .

Частицы среды , в которой распространяется волна, не вовле­каются волной в поступательное движение , они лишь совершают колебания около своих положений равновесия. В зависимости от направления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль направления распространения волны. В попереч­ной волне частицы среды колеблются в направлениях, перпендику­лярных к направлению распространения волны. Упругие попереч­ные волны могут возникнуть лишь в среде, обладающей сопротивле­нием сдвигу. Поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. В твердой среде возможно возникновение как продольных, так и поперечных волн.

Рисунок 1

На рис. 1 показано движение частиц при распространении в среде поперечной волны. Номерами 1, 2 и т. д. обозначены час­тицы, отстоящие друг от друга на расстояние, равное 1/4 , т. е. на расстояние, проходимое волной за четверть периода колебаний,

совершаемых частицами. В момент времени, принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла час­тицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положе­ния; одновременно начинает смещаться из положения равновесия частица 2. По прошествии еще четверти периода первая частица будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положе­ния, а третья частица начнет смещаться вверх из положения рав­новесия. В момент времени, равный Т, первая частица закончит полный цикл колебания и будет находиться в таком же состоянии движения, как и в начальный момент. Волна к моменту времени T, пройдя путь vТ, достигнет частицы 5.

На рис. 2 показано движение частиц при распространении в среде продольной волны. Все рассуждения, касающиеся поведе­ния частиц в поперечной волне, могут быть отнесены и к данному случаю с заменой смещений вверх и вниз смещениями вправо и влево. Из рисунка видно, что при распространении продольной волны в среде создаются чередующиеся сгущения и разрежения частиц (места сгущения частиц обведены на рисунке пунктиром), перемещающиеся в направлении распространения волны со ско­ростью v.

Рисунок 2

§ 2. Фронт волны. Длина волны.

На рис. 1 и 2 показаны колебания частиц, положения равновесия которых лежат на оси х. В действительности колеблют­ся не только частицы, расположенные вдоль оси х, а совокупность частиц, заключенных в некотором объеме. Распространяясь от ис­точника колебаний, волновой процесс охватывает все новые и но­вые части пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называется фронтом волны (или волновым фронтом ). Фронт волны пред­ставляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой ко­лебания еще не возникли.

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью . Волновую по­верхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности остаются неподвижными. Волновой фронт все время перемещается.

Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сфериче­ской. В плоской волне волновые поверхности представляют со­бой множество параллельных друг другу плоскостей, в сфериче­ской волне — множество концентрических сфер.

Рассмотрим случай, когда плоская волна распространяется вдоль оси х. Тогда все точки среды, положения равновесия кото­рых имеют одинаковую координату х (но различные значения координат y и z), колеблются в одинаковой фазе.

Рисунок 3

На рис. 3 изображена кривая, которая дает смещение из положения равновесия точек с различными x в некоторый мо­мент времени. Не следует воспринимать этот рисунок как зримое изображение волны. На рисунке показан график функции (х, t) для некоторого фиксированного момента времени t. С течением времени график перемещается вдоль оси х. Такой график можно строить как для продольной, так и для поперечной волны. В обоих случаях он выглядит одинаково.

Расстояние , на которое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны . Очевидно, что

=vТ, (1.1)

где v – скорость волны, Т – период колебаний. Длину волны можно определить также как расстояние между ближайшими точками среды, колеблющимися с разностью фаз, равной 2П. Заменив в соотношении (1.1) Т через 1/ ( – частота колебаний), получим

=v (1.2)


Рассмотрев кратко основные понятия, связанные с волной, перейдем к описательной стороне, т.е. волновому уравнению.

Глава II.

Волновое уравнение.

§ 1. Математические сведения.

Этот параграф является математическим введением к тому динами­ческому рассмотрению волн, которое будет дано в $2. Рассмотрим произвольную функцию

f(at-bx) (2.3) от аргумента а t— bх. Продифференцируем ее дважды по t:

(2.4)

Здесь штрих означает дифференцирование по аргументу at—bx. Продифференцируем теперь нашу функцию дважды по х:

(2.5)

Сравнивая (2.4) и (2.5), мы убеждаемся, что функция (2.3) удовлетво­ряет уравнению

(2.6)

где

u=a/b.

Легко видеть, что этому же уравнению удовлетворяет произвольная функция

f(at+bx) (2.7) (2.7) аргумента at+bx, а также сумма функций вида (2.3) и (2.7).

Функции (2.3) и (2.7) изображают при положительных a, b пло­ские волны, распространяющиеся, не деформируясь, со скоростью и в сто­рону соответственно возрастающих или убывающих значений х **).

Уравнение (2.6)—дифференциальное уравнение в частных производ­ных, играющее в физике очень важную роль. Оно называется волновым уравнением. В математических курсах доказывается, что оно не имеет решений, отличных от тех, которые могут быть представлены функциями вида (2.3) и (2.7) или суперпозицией таких функций, например,

f1 (at - bх) + f2 (at+bx).

Всякий раз, когда из физических соображений можно установить, что та или иная физическая величина s удовлетворяет уравнению вида

(2.6а)

мы сможем на основании сообщенных здесь математических сведений за­ключить, что процесс изменений этой величины носит характер плоской, волны, распространяющейся в ту или другую сторону со скоростью и, или суперпозиции таких волн.

Вид функций f1 , f2 опре­деляется характером движения источника волн, а также явлениями, происходящими на границе среды.

Пусть источником волн является плоскость х =0, при­чем на этой плоскости величина S колеблется но закону s =Acoswt. В этом случае от плоскости х= 0 распространяются вправо и влево волны

s= Acos(wtkx), k =.

Из линейности волнового уравнения следует, что если ему удов­летворяют функции s1 , s2 ,s3 , ... в отдельности, то ему удовлетворяет также функция

S == S1 + S2 + S3 + ...

(принцип, суперпозиции).

Рассмотрим несколько примеров.

а) Волновому уравнению удовлетворяют синусоидальные бегущие волны

s1 = Aсоs(wt — kx), s2 = Acos(wt+kx).

На основании принципа суперпозиции волновому уравнению удовлетво­ряет стоячая волна

s=2Acoskx coswt

являющаяся суперпозицией только что рассмотренных синусоидальных бегущих волн.

б) Волновому уравнению на основании принципа суперпозиции удо­влетворяет всякая функция вида

S=

Это—функция вида f(at—bx); она изображает несинусоидальную волну, распространяющуюся без деформации в сторону возрастающих х.

в) Пусть волны S1 , S2 , имеющие вид коротких импульсов, распростра­няются навстречу одна другой. В некоторый момент моментальный снимок суперпозиции S1 + S2 этих волн имеет вид, показанный на рис. 4,а. Через некоторое время моментальный снимок волны будет иметь вид, показанный на рис. 4, б, – волны пройдут «одна сквозь другую» и притом каждая так, как будто другой не существует.

§2. Упругие волны в стержне.

1. волновое уравнение.

В предыдущем параграфе мы рассмотрели математическую сторону волнового уравнения. В этом же параграфе я хотел бы на конкретном примере рассмотреть как работает тот математический аппарат.

Рисунок 4

Применим второй закон Ньютона и закон сложения сил к движению куска стержня, заключенного между двумя плоскостями x и х+х . Масса этого куска равна р0 S0 х, где р0 и S0 – соответственно плотность и сечение в отсутствие деформации. Пусть – смещение центра тяжести рассматриваемого куска. Тогда

слева стоит произведение массы куска на ускорение д­­­2 /д t2 его центра тяжести, справа – результирующая внешних сил, действующая на кусок.

Разделим уравнение на S0 :

(2.7)

Перейдя к пределу при , получим уравнение

(2.8)

справедливое в каждой точке стержня. Оно указывает, что ускорение данной точки пропорционально частной производной напряжения по ж в этой точке.

Подставляя в (2.8) соотношение (2.7), получим:

(2.9)

Вспомнив теперь формулу , содержащую определение дефор­мации, и подставив ее в (2.9), получаем:

(2.10)

Это—волновое уравнение. Оно указывает, что смещение распростра­няется но стержню в виде волн

(2.11)

или образует суперпозицию таких волн. Скорость распро­странения этих волн (скорость звука в стержне)

(2.12)

(мы опускаем для краткости индекс 0 у р). Эта скорость тем больше, чем жестче и чем легче материал. Формула (2.12)—одна из основных формул акустики.

Наряду со смещением нас интересуют скорость v = , с которой

.движутся отдельные плоскости х = const (не смешивать с u ), деформация и напряжение . Дифференцируя (2.11) по t и но x , получаем:

v= uf’(x ut) (2.13a)

=f'(x ut), (2.13б)

=Ef’ (x ut). (2.13в)

Таким образом, смещение, скорость, деформация и напряжение распро­страняются в виде связанных определенным образом между собой неде­формирующихся волн, имеющих одну и ту же скорость и одинаковое на­правление распространения.

На рис. 5 показан пример «моментальных снимков», относящихся к одному и тому же моменту времени, смещения, деформации и скорости в одной и той же упругой волне. Там, где смещение имеет максимум или минимум, деформация и скорость равны нулю, так как они обе пропорцио­нальны производной f'{x ut). Физическая интерпретация здесь оче­видна: около максимума или минимума смещения соседние (бесконечно близкие) точки одинаково смещены и, следовательно, нет ни растяже­ния, ни сжатия; в тот момент, когда смещение достигает максимума (ми­нимума), его возрастание сменяется убыванием (или наоборот).

Сравнивая формулы (2.13а), (2.13в) и принимая во внимание (2.12) мы видим, что

(2.14)

где

(2.15)

есть величина, не зависящая от вида функции f и целиком определяемая свойствами материала. Эта величина называется удельным акустическим сопротивлением материала. Она является, как мы видим, наряду с u его важнейшей акустической характеристикой. Название величины связано с формальной аналогией между уравнениями (2.14) и законом Ома (р аналогично разности потенциалов, v - силе тока).


§ 2. Упругие волны в газах и жидкостях

1. Волновое уравнение.

Мы рассматриваем здесь газ или жидкость (так же как твердое тело в предыдущих параграфах) как сплошную непре­рывную среду, отвлекаясь от его атомистической структуры. Под смеще­нием мы здесь понимаем (как и в § 1) общее смещение вещества, запол­няющего объем, заключающий в себе очень много атомов, но малый по сравнению с длиной волны.

Будем считать, что рассматриваемый газ или жидкость находятся в очень длинной цилиндрической трубе, образующие которой парал­лельны оси х, и что смещение зависит только от одной координаты х. Мы можем применить к столбу газа или жидкости, заполняющему трубу, те же рассуждения, что и к стержню (§ 1). Мы придем, таким образом, к уравнению

(2.16)

где р = — есть давление в газе или жидкости. Здесь — значение плот­ности в состоянии равновесия. Пусть ей соответствует давление р0 . Ве­личины р0 , не зависят ни от х , ни от t.

Уравнение (2.16) применимо и в случае плоских волн в неограничен­ной жидкой или газообразной среде (можно мысленно выделить цилин­дрический столб, параллельный направлению распространения и при­менить к нему те же рассуждения, что к столбу, заключенному в трубе).

Как известно из термодинамики, р есть функция плотности данной массы газа (или жидкости) и ее температуры. Температура в свою оче­редь изменяется при сжатии и разрежении. Теплопроводность газов и жидкостей очень мала, поэтому можно считать в первом приближении, что при распространении звука процесс сжатия и разрежения каждой части газа или жидкости происходит адиабатически, т. е. без заметного теплообмена с соседними частями. В термодинамике показывается, что в этом случае (если можно пренебречь внутренним трением и некоторыми другими явлениями температура является однозначной функцией плотности , и следовательно, давление также.

При заданной деформации в твердом теле также зависит от температуры. Но в акустике твердых тел это обстоятельство не играет, существенной роли.

В газах и в жидкостях за некоторыми исключениями (например вода, при температуре ниже 4° С) температура растет при сжатии и уменьшается при расшире­нии.

Есть однозначная функция плотности:

p=f(p). (2.17)

Введем обозначения

, (2.18) где и — соответственно изменения давления и плотности при нару­шении равновесия.

Подставляя первую формулу (2.18) в (2.16) и принимая во внимание, что при равновесии давление не зависит от х, т. е.

получаем:

(2.19)

Найдем теперь связь между и деформацией = . Мы сначала выразим через , а затем через :

а) Подставляя (6.28) в (6.27), имеем:

P0 +=f( +)

разлагая f( +) в ряд по степеням ,

P0 +=f( )+f’( )+1/2f’( )( )2 ......

Так как P0 =f( ), то получаем:

=f’( )+1/2f’’( )()2 ..... (2.20)

Здесь мы сделаем существенное предположение: будем считать уплот­нения и разрежения настолько малыми, что допустимо пренебречь в раз­ложении (2.20) членами, пропорциональными ( )2 , ( )3 , . . ., и заменить (2.20) линейным соотношением

=f’( )

Тем самым мы ограничиваем себя исследованием волн малой интен­сивности.

f’ () —постоянный при данных условиях опыта коэффициент, опреде­ляемый состоянием среды при равновесии.

б) Объем V0 в результате деформации превращается в объем

V=V0 (1+ ), (2.21)

так как здесь поперечный размер (в отличие от твердого стержня) остается, постоянным, а длина превращается в . Но произведение плотности на объем, равное массе рассматриваемой порции вещества, не меняется:

Подставляя (2.18) и (2.21), получаем:

Пренебрегая и здесь высшими степенями малой величины , получаем:

Таким образом,

(2.22)

Подставляя, наконец, (2.22) в (2.19), мы получаем волновое урав­нение

(2.23)

(2.24)

Отсюда заключаем, что рассматриваемые малые деформации рас­пространяются в виде плоских не деформирующихся волн; скорость рас­пространения (скорость звука) тем больше, чем сильное в данной среде возрастает давление при адиабатическом возрастании плотности; она раина квадратному корню из производной давления по плотности, взятой при значении последней в отсутствие волны ( ).

2. Случай идеального газа . Идеальным газом называется газ, для которого справедливо уравнение состояния

pV=RT, (2.25)

где p – давление, V—объем одного моля, R универсальная газовая по­стоянная, равная 8,3143 эрг/град, T—температура, измеренная по термодинамической шкале («абсолютная температура»), или

где М— масса 1 моля, = M/V— плотность.

Воздух, кислород, азот, водород и многие другие газы при комнатной температуре и давлении порядка атмосферного можно рассматривать с достаточным для акустики приближением как идеальные газы.

Как учит термодинамика, в случае идеального газа соотношение (2.17) имеет вид

(2.26)

где

постоянная величина (С и С — теплоемкости газа соответственно при постоянном давлении и постоянном объеме). Следовательно, здесь

(2.27)

(формула Лапласа).

Еще задолго до Лапласа вопросом о скорости звука в воздухе зани­мался Ньютон. Он считал, что

(2.26а)

т. е. не учитывал изменения температуры воздуха при распространении в нем звуковой волны, вследствие чего получил для скорости звука соот­ношение

(2.27а)

Это соотношение можно получить из уравнения (2.24), подставляя в него (2.26а) вместо (2.26).

Для воздуха ( =1,4) при комнатной температуре (20° С, Т =293°) формула Ньютона дает u =290 м/сек, формула Лапласа и =340 м/сек. Сравнивая эти значения с теми, которые дает опыт (гл. V, § 3), мы видим, что формула Лапласа, в отличие от формулы Ньютона, хорошо согласуется с опытом. Формула Лапласа хорошо подтверждается на опыте и для других газов (но крайней мере при не очень высоких частотах.

Этим оправдывается предположение о том, что сжатие и разрежение газа в звуковой волне являются практически адиабатическими процессами.


Список использованной литературы.


à Горелик, Колебания и волны,

à И.В. Савельев, курс общей физики, т.2, М, 1988г.

à Б.М. Яворский, А.А. Пинский, Основы физики, т.2, М., 1972г.


ПРАКТИЧЕСКИЕ ЗАДАНИЯ.

Задача №1.

Амплитуда вынужденных колебаний реактора при очень малой частоте 2 мм, а при резонансе 16 мм. Предполагая, что декремент затухания меньше единицы, определить его.


Задача №2.

Две волны Х1 =Аsin(wt-kl) и Х2 =Аsin(wt+kl) с одинаковыми частотами 4Гц распространяются со v =960 см/сек. Они интерферируют между собой и образуют стоячую волну. Определить амплитуды точек стоячей волны через каждые 20 см, начиная отсчет от узла. Определить величину смещения и скорость этих точек для момента времени 7/24 сек.


Задача №3.

Между приемником и стенкой расположен источник звуковых колебаний с частотой – 100 Гц. Линия, проведенная через приемник и источник, нормальна к стенке, которая движется к источнику вдоль этой линии со v= 7 м/с. Скорость звука 340 м/с. Возможно ли возникновение акустического биения.


Для рецензии и заметок:

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:20:55 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:47:54 29 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
15:22:33 24 ноября 2015
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
13:46:54 24 ноября 2015

Работы, похожие на Реферат: Волны в упругой среде. Волновое уравнение

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150819)
Комментарии (1840)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru