Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Особливості оптичного поглинання сплавів Cu2Se - HgSe - GeSe2

Название: Особливості оптичного поглинання сплавів Cu2Se - HgSe - GeSe2
Раздел: Рефераты по астрономии
Тип: реферат Добавлен 16:56:21 26 января 2011 Похожие работы
Просмотров: 6 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Особливості оптичного поглинання сплавів Cu2 Se - HgSe - GeSe2

Вступ

Науковці та інженери все більше цікавляться склоподібними напівпровідниками. Це пов’язано з тим, що ці матеріали мають широке практичне застосування в мікроелектроніці, а також є цікавими з теоретичної точки зору в плані подальшого розвитку теорії невпорядкованих конденсованих систем. До таких матеріалів належать халькогенідні стекла.

Одержані стекла володіють цікавим комплексом властивостей і є перспективними для практичного застосування [1]. З метою одержання нових склоподібних матеріалів, а також розширення спектра їх використання проведено дослідження величини області склоутворення і досліджено особливості краю поглинання стекол у квазіпотрійній системі Cu2 Se - HgSe - GeSe2 .

Експериментальні результати та обговорення

Дослідження спектрального розподілу коефіцієнта поглинання проводилося за стандартною методикою із синхронним детектуванням. Для дослідження готувалися зразки завтовшки 0,01 – 0,015 см. Обробка поверхні відбувалася механічним способом із використанням алмазних паст різного ступеня зернистості. Для дослідження були взяті сплави по ізоконцентратах HgSe та Cu2 Se:

1) (0 - 8) мол. % Cu2 Se, (77 - 69) мол. % GeSe2 , 23 мол. % HgSe

2) (19 - 38) мол. % HgSe, (76 - 57) мол. % GeSe2 , 5 мол. % Cu2 Se

На рис. 1 – 4 подано графіки залежності коефіцієнта поглинання a(см-1 ) від довжини хвилі l (nm), залежно від складу при температурах Т=77К та Т=290К.



Усі досліджувані зразки характеризуються прозорістю в інфрачервоній області спектра та експоненційним спадом коефіцієнта поглинання на краю фундаментального поглинання. Ці властивості є характерними для халькогенідних стекол. За даними спектрального розподілу коефіцієнта поглинання побудовано залежності оптичної енергії іонізації від складу (рис. 5, 6).

(Енергія оптичної іонізації визначалася за точкою порога рухливості, означеної за Моттом [2]). При збільшенні вмісту Cu2 Se у сплавах (рис. 5) енергія оптичної іонізації зменшується. До того ж в інтервалі (0 – 4) мол.% Cu2 Se енергетична щілина зменшується плавно, вище 4 мол.% Cu2 Se проявляється різке зменшення Еg при Т=77 К та Т=290 К. Як випливає з експерименту, на межі склоутворення (5 мол. % Cu2 Se – 19 мол. % HgSe – 76 мол. % GeSe2 та 5 мол. % Cu2 Se – 38 мол. % HgSe – 57мол. % GeSe2 ) Еg набуває мінімального значення (рис. 6) при Т=77К та Т=290К. На рис. 6 також спостерігається максимум оптичної енергії іонізації поблизу 25 мол. % HgSe. Цей висновок підтверджує також рис. 5, оскільки сплави зі складом 6 мол. % Cu2 Se – 23 мол. % HgSe – 71мол. % GeSe2 та 8 мол. % Cu2 Se – 23мол. % HgSe – 69 мол. % GeSe2 перебувають на межі склоутворення, а енергія оптичної іонізації для них є найменшою.

Важливою характеристикою при дослідженні оптичного поглинання є вплив температури на величину a та Eg . Проаналізуємо зміну температури сплаву як температурну деформацію. Найбільше вплив температури на край поглинання проявляється в зсуві порога поглинання внаслідок зміни ширини забороненої зони [3]. Температура викликає зміну міжатомної відстані (у кристалах сталої решітки а0 ). Такі зміни можна здійснити не лише температурною деформацією D(Т), а й деформацією тиску D(Р). Бардін і Шоклі [4] показали, що зміни щодо енергетичного рівня при малих деформаціях можна описати за допомогою тензора деформаційного потенціалу Еij .

d Е(r) = , (1)

де Wij (r) – тензор деформації;

d Е(r) зміна енергії рівня в точці r.

Для випадку однорідної температурної деформації D(Т) ширина забороненої зони визначається співвідношенням:

Eg (T) = Eg (0) + [Ea,c(T) - Ea,v(T)] + (E1,c - E1,v ) D(T), (2)

де: D(T) = dT – температурний коефіцієнт розширення;

Ea,с , Ea,v – енергія країв зони;

Е1 – коефіцієнт, який характеризує зміну положення рівня, залежно від температури Т.

Із виразу (2) одержимо:

. (3)

Температурну деформацію досліджено при вимірюванні залежності a(l) (a (см-1 ) – коефіцієнт поглинання) на краю фундаментального поглинання при температурах Т = 77 та Т = 290 К. У сплавах системи Cu2 Se – HgSe – GeSe2 виявлено зсув краю поглинання. Причому при пониженні температури до рідкого азоту (Т = 77 К) енергія оптичної іонізації Еg як збільшувалась, так і зменшувалася, залежно від складу зразків. Наприклад, у стеклах (0 – 4) мол. % Cu2 Se – 23 мол. % HgSe – (77 – 73) мол. % GeSe2 при пониженні температури Eg зростає, в стеклах (6 – 8) мол. % Cu2 Se – 23 мол. % HgSe – (71 – 69) мол. % GeSe2 – зменшується (рис. 5).

У багатодолинному напівпровіднику різні долини характеризуються різними коефіцієнтами Е1,с , Е1,v (формула 3). Тому можливі випадки:

1) > 0; 2) < 0; 3) = 0.

Найбільш поширений є випадок 2. Для сплавів, досліджених у цій статті, значення подано в таблиці 2.

Таблиця 2

Залежність температурної деформації від складу

Склад, мол. %

Cu2 Se

HgSe

GeSe2

0

23

77

-11,55*10-4

2

23

75

-9,61*10-4

4

23

73

-11,50*10-4

6

23

71

1,41*10-4

8

23

69

2,72*10-4

5

19

76

-1,033*10-4

5

24

71

0,657*10-4

5

28,5

66,75

0,188*10-4

5

33,25

61,75

-1,643*10-4

5

38

57

-0,516*10-4

Як видно із таблиці 2, набуває як додатних, так і від’ємних значень. Вираз (2) допускає можливість таких випадків.

Порівняємо спектральний розподіл коефіцієнта поглинання стекол за ізоконцентра-тами (мол. % Cu2 Se = const) при різних температурах: Т=77К та Т=290К (рис. 7). На ділянці з енергією фотонів вище “експоненційного хвоста” спостерігається зменшення коефіцієнта поглинання при температурі рідкого азоту, порівняно зі значенням a при нормальних умовах. Те ж саме відбувається на ділянці графіка в інфрачервоній області спектра при l > 1,9 мкм. Як відомо, коефіцієнт поглинання пропорційний інтегралу за усіма можливими параметрами станів, що розділені енергією hn, від добутку густин початкових і кінцевих станів [5]. Крім того, якщо переходи відбуваються за участю фононів, то коефіцієнт a пропорційний ймовірності взаємодії з фононами, яка сама є функцією числа фононів N­p енергією Ep , тобто ¦(Np ). Завдяки вищевикладеним міркуванням, кінцева формула коефіцієнта поглинання для переходів з поглинанням фонона має вигляд:

a(hn) ~ Np ×( hn – Eg + Ep )2 (4)

Формула (4) визначає залежність a = a(hn) для непрямих переходів між непрямими долинами.

Np = – число фононів, що підлягає статистиці Бозе – Ейнштейна.

Таку ж залежність a(hn) отримали Н. Мотт і Е. Девіс [2] для склоподібних напівпровідників із енергією hn вище “експонеційного хвоста”:

a(hn) ~ ( hn – E0 )2 ,

де Е0 – величина щілини рухливості.

Висновки

Відомо, що при низьких температурах густина фононів невелика, тому при зменшенні Np у формулі (4), a(hn) теж зменшується, що і спостерігається експериментально. Зміну знака (3) для різного компонентного складу стекол (табл. 2) можна пов’язати із заміною одних переходів між енергетичними рівнями іншими. Енергія оптичної іонізації Eg в ізоконцентратах HgSe та Cu2 Se (рис. 5, 6) зменшується і набуває мінімального значення при наближенні до межі склоутворення.

Література

1. Olekseyuk D., Parasyuk O.V., Bozhko V.V., Petrus' I.I., H alyan V.V. Physico-chemical and physical properties of glasses of the HgSe - GeSe2 system // J. Functional materials . 1999 .– № 3 .– Р. 550 553.

2. Мотт Н., Девис Э. Электронные процессы в некристалических веществах: Т.1. Пер. с анг. – М.: Мир, 1974. 472 с.

3. Оптические свойства полупроводников / Под ред. Р. Уиллардсона, И.А. Бира. – М.: Мир, 1970. 368 с.

4. Bardeen J., Shocley W. // Phys. rev. – 1950. – № 80. – Р. 72

5. Панков Ж. Оптические процессы в полупроводниках. – М.: Мир, 1973. – 456 с.

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:03:24 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:35:10 29 ноября 2015

Работы, похожие на Реферат: Особливості оптичного поглинання сплавів Cu2Se - HgSe - GeSe2

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150032)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru