Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Задачи по Математике

Название: Задачи по Математике
Раздел: Рефераты по математике
Тип: реферат Добавлен 23:59:46 24 июня 2011 Похожие работы
Просмотров: 35 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

ЗАДАЧИ КОНТРОЛЬНОЙ РАБОТЫ

Задачи № 1-10. Решить систему линейных алгебраических уравнений тремя способами: 1) методом Крамера, 2) с помощью обратной матрицы, 3) методом Гаусса.

9)

Решение

Задача № 1. Решить систему линейных алгебраических уравнений тремя способами: 1) методом Крамера, 2) с помощью обратной матрицы, 3) методом Гаусса.

1-й способ (метод Крамера).

По формулам Крамера, найдем решение:

2 способ (решение с помощью обратной матрицы).

Перепишем систему уравнений в виде AX = B , где

, , .

Решение матричного уравнения имеет вид X = A -1 B . Найдем обратную матрицу A -1 . Имеем следующий главный определитель системы:

Вычислим алгебраические дополнения элементов транспонированной матрицы:

, , , ,

, , , ,

.

Тогда обратная матрица имеет вид:

, следовательно,

.

Ответ: x = 2; y = -1;z = 3.

3 способ (метод Гаусса).

.

Из последнего уравнения имеем z = 3; подставляя это значение во второе уравнение, получаем y = -1 и тогда из первого уравнения находим x = 2.

Задачи № 11 - 20. Найти производные функций:

15) а) ; б) .

Решение

Задачи № 21-30. Найти общее и частное частное решение линейного однородного дифференциального уравнения второго порядка, соответствующего начальным условиям:

при , , .

21) ;

Решение

Составим характеристическое уравнение имеет вид:

Следовательно, общее решение уравнения без правой части таково:

Так как n=1 не является корнем характеристического уравнения, то ищем частное решение уравнения с правой частью в виде

Подставляя эти выражения в наше неоднородное уравнение, получим

Итак, частное решение уравнения с правой частью есть

Общее же решение этого уравнения на основании предыдущей теоремы имеет вид:

Найдем частные решения:

Задачи № 31-40

38) В группе из 25 студентов, среди которых 10 девушек, разыгрываются 5 путевок. Найти вероятность того, что среди обладателей путевок окажутся две девушки.

Решение

Задача решается с помощью классической формулы для вычисления вероятностей:

Ответ:

Задачи № 41-50

Закон распределения дискретной случайной величины Х задан в таблице. Найти: 1)математическое ожидание, дисперсию и среднее квадратическое отклонение; 2) вычислить математическое ожидание и дисперсию случайной величины , пользуясь свойствами математического ожидания и дисперсии.

Номер задачи Условие задачи
4 1 xi 2 4 6 8 10
pi 0,2 0,3 0,1 0,2 0,2

Решение

Расчет ведем по формулам для числовых характеристик дискретных случайных величин.

Математическое ожидание:

Дисперсия:

Среднее квадратическое отклонение:

Для вычисления характеристик случайной величины Y=3X+20 воспользуемся свойствами математического ожидания и дисперсии:

Ответ:

Аудиторная контрольная работа по дисциплине «Математика»

Вариант № 1

1. Решить систему уравнений: .

Решение

Ответ: х=1, у=-1.

    Найти производную: .

Решение

    В группе 12 студентов, среди которых 8 отличников. По списку наудачу отобраны 9 студентов. Найти вероятность того, что среди отобранных студентов окажутся 5 отличников.

Решение

Задача решается с помощью классической формулы для вычисления вероятностей:

Ответ:

4. Задан закон распределения дискретной случайной величины Х:

xi -4 6 10
pi 0,2 0,3 0,5

Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение.

Решение

Расчет ведем по формулам для числовых характеристик дискретных случайных величин.

Математическое ожидание:

Дисперсия:

Среднее квадратическое отклонение:

Ответ:

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:42:14 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:22:13 29 ноября 2015

Работы, похожие на Реферат: Задачи по Математике

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150157)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru