Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Аналітична геометрія

Название: Аналітична геометрія
Раздел: Рефераты по математике
Тип: реферат Добавлен 04:29:40 27 февраля 2011 Похожие работы
Просмотров: 11 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Реферат

на тему:

Аналітична геометрія

в просторі


Аналітична геометрія в просторі

Загальне рівняння площини в тривимірному просторі , яка проходить через точку (x 0 ;y 0 ;z 0 ) перпендикулярно до вектора має вигляд

A (x -x 0 )+B (y -y 0 )+C (z -z 0 ) (2.7)

або

Ax +By +Cz =0 (2.8)

Спеціальними площинами є площини OXY (рівняння z =0), OXZ (рівняння y =0) та OYZ (рівняння x =0).

Рівняння площини, яка проходить через три задані точки (x 0 ;y 0 ;z 0 ), (x 1 ;y 1 ;z 1 ), (x 2 ;y 2 ;z 2 ) (якщо ці точки не лежать на одній прямій), є таким:

(2.9)

Приклад . Записати рівняння площини, яка проходить через точки M 0 (1;2;3), M 1 (2;1;2) та M 3 (3;3;1).

Маємо ,

звідки x +4y -4=0.

Рівняння площини у відрізках є таким:

. (2.10)

Ця площина проходить через точки (a ;0;0), (o;b ;0) та (0;0;c ).

Приклад . Ціни за одиницю кожного з трьох товарів становлять, відповідно, 2, 3 та 4 умовні одиниці. Бюджет споживача дорівнює 120 умовних одиниць. Зобразити графічно бюджетне обмеження цього споживача.

Нехай споживач на всі гроші купив x одиниць першого товару, y одиниць другого та z одиниць третього. Тоді виконується рівність

2x +3y +4z =120.

Ми отримали бюджетне обмеження споживача як загальне рівняння площини.

Зручніше записати це обмеження у вигляді рівняння площини у відрізках (виконавши ділення на 120):

.

`Отже, споживач може купити або тільки 60 одиниць першого товару, або тільки 40 другого, або тільки 30 третього, а також може перебувати в довільній іншій точці площин за умов x ³0; y ³0; z ³0 (рис .2.10).

z

Бюджетне обмеження –

частина площини в просторі

30


40

y

60

x

Рис. 2.10.

Якщо ж витрачають не всі гроші, то бюджетне обмеження буде тетраедром:

.

Розглянемо випадок, коли споживач зовсім не купує третього товару (z =0). Тоді бюджетне обмеження представлятиме собою відрізок прямої на площині

,

або множину точок всередині трикутника (рис. 2.11)

.


y

Бюджетне обмеження -

40 відрізок прямої на площині

60 x

Рис. 2.11.

Рівняння прямої у тривимірному просторі також записується багатьма способами.

Пряму як перетин двох площин задають системою лінійних рівнянь

. (2.11)

Симетричне (канонічне) рівняння прямої, що проходить через точку (x 0 ;y 0 ;z 0 ) паралельно до напрямного вектора , має вигляд

. (2.12)

Параметричне рівняння прямої є таким:

. (2.13)

Рівняння прямої в просторі, яка проходить через дві точки (x 1 ;y 1 ;z 1 ) та (x 2 ;y 2 ;z 2 ) , є подібним до рівняння прямої на площині:

. (2.14)

Приклад . Пряма в просторі проходить через дві точки: M 1 (1;2;3) та M 2 (4;6;8) . Рівнянням цієї прямої згідно (2.14) є рівняння

.

Виконавши операції віднімання, отримуємо канонічне рівняння

.

Від останнього рівняння перейдемо до параметричного задання прямої (формула 2.13): .

У тривимірному просторі справджуються такі формули для кутів:

кут між двома прямими та

обчислюється згідно з формулою ;

кут між прямою та площиною Ax+By+Cz+D=0 знаходиться за формулою .

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений07:36:23 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:18:41 29 ноября 2015

Работы, похожие на Реферат: Аналітична геометрія

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150448)
Комментарии (1831)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru