Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Контрольная работа: Расчет лампы бегущей волны О-типа малой мощности

Название: Расчет лампы бегущей волны О-типа малой мощности
Раздел: Рефераты по коммуникации и связи
Тип: контрольная работа Добавлен 19:14:53 09 декабря 2010 Похожие работы
Просмотров: 78 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Расчет лампы бегущей волны О-типа малой мощности


Содержание

Введение

1 Расчетная часть

1.1 Расчет геометрии замедляющей системы

1.2 Расчет дисперсионной характеристики и сопротивления

связи

1.3 Расчет геометрии рабочих параметров вывода и ввода энергии

1.4 Расчет величины индуктивности фокусирующего магнитного поля

Заключение

Список литературы

Приложение


Введение

Лампа бегущей волны - электровакуумный СВЧ прибор, работа которого основана на длительной бегущей электромагнитной волне и электронного потока, движущийся в одном направлении. ЛБВ предназначена для широкополосного усиления СВЧ колебаний в диапазоне частот от 300 МГц до 300 ГГц, а так же для преобразования умножения частот и других целей.

Основными частями лампы бегущей волны являются: электронная пушка для создания и формирования электронного потока; замедляющая система, снижающая скорость бегущей волны вдоль оси ЛБВ до скорости, близкой к скорости электронов, для синхронного движения волны с электронным потоком (обычно используется металлическая спираль, жестко закрепленная продольными диэлектрическими опорами и отличающаяся слабой зависимостью скорости бегущей вдоль неё волны от частоты, благодаря чему достигается эффективное взаимодействие волны с электронным потоком в широкой полосе частот); фокусирующая система (периодическая система постоянных магнитов, соленоид или др.) для удержания магнитным полем электронного потока в заданных границах поперечного сечения по всей его длине; коллектор для улавливания электронов; ввод и вывод энергии электромагнитных колебаний; поглотитель энергии колебаний СВЧ на небольшом участке замедляющей системы для устранения самовозбуждения ЛБВ из-за отражений волн от концов замедляющей системы. Усиление СВЧ колебаний в ЛБВ происходит следующим образом: ускоренные в электронной пушке электроны влетают в пространство взаимодействия замедляющей системы. В это же пространство через ввод энергии усиливаемые СВЧ колебания. При определенной конфигурации металлических элементов замедляющей системы электрическое поле волны в пространстве взаимодействия имеет составляющую, направленную вдоль оси прибора, с которой и происходит взаимодействия электронов. В замедляющей системе осуществляется синхронизм электронов и волн.

В результате взаимодействия с электрическим полем бегущей волны тормозятся или ускоряются в зависимости от фазы электрического поля, при этом происходит модуляция электронного потока по плотности: образование сгустков, сопровождающаяся возбуждением в замедляющей системе электромагнитного поля, тормозящего электроны в пучке. При торможении электроны отдают свою энергию, увеличиваю поля волны, то есть, усиливая входной сигнал.

В зависимости от длины волны к ЛБВ малой мощности обычно относятся ЛБВ с выходной мощностью до 1-10 Вт.


1. Расчетная часть

1.1 Расчет геометрии замедляющей системы

Выбираем условный угол пролета ξа в заданных пределах 1,61,8 . Расcчитываем средний радиус спирали замедляющей системы по формуле:

,(1.1)

гдеа - средний радиус спирали , см;

- длина волны, соответствующая середине рабочего диапазона, см;

- ускоряющее напряжение, В.

Длина волны , соответствующая середине рабочего диапазона определяется по формуле:

,(1.2)

(см),

тогда

(см).

Рассчитываем шаг спирали, используя формулу имеющую следующий вид:


,(1.3)

(см).

Используя соотношение , определили величину диаметра проволоки. Радиус проволоки выбирают малым по сравнению с шагом спирали для получения наибольшего поля, взаимодействующего с электронным потоком, поэтому

(см)(1.4)

Выбираем ближайший стандартный диаметр проволоки см.

Определяем радиус внешнего проводника (экрана) замедляющей системы из соотношения:

,(1.5)

Принимаем =1,5 (см).

Рабочая длина замедляющей системы рассчитывается из выражения:

,(1.6)

где - коэффициент усиления по мощности,

С - параметр усиления.


,(1.7)

где W – волновое сопротивление, Ом;

- ток системы, А.

Выбираем отношение радиуса потока к среднему радиусу спирали замедляющей системы:

,(1.8)

которое определяет наибольшее взаимодействие электронного потока с продольной составляющей .

Находим волновое сопротивление:

(Ом),

гдес - скорость света в вакууме, см/с;

- скорость электрона, см/с.

Величина плотности тока катода для малошумящих ламп меньше значений , поэтому ток системы:

,(1.9)

Выбираем плотность тока (мА/см2 )

Радиус электронного потока:


(см),

тогда ток электронного потока:

(A).

Найденные значения W и определяют следующую величину параметра усиления:

Определяем величину : используя характеристическое уравнение, записанное для решения методом основ находим величину параметра А :

,(1.10)

где параметр объемного заряда 4Q при выбранных значениях и равен 7,2, тогда определяем величину .

,(1.11)

где - параметр расталкивания, рассчитанный по формуле:

,(1.12)


где - собственная частота колебаний электронного потока бесконечного сечения,

,(1.13)

(Гц).

Тогда

=0,011

Подставляя величины 4Q , и в выражение для получим:

,

тогда

,

.

Подставляем значения в уравнение, получаем:

.(1.14)

Первый корень уравнения =-0,12, , второй и третий корень находится из выражения:

.(1.15)


Определим параметр по формуле:

,(1.16)

.

Используя величину получим искомое значение для величины :

,(1.17)

.

Теперь

.

Протяженность активной части системы до поглощения:

,(1.18)

(см).

Протяженность поглотителя выбираем равной (см), тогда общая длина замедляющей системы при определении (см):

,(1.19)

(см).

Угол подъема спирали:


.(1.20)

1.2 Расчет дисперсионной характеристики и сопротивления связи

Под дисперсией понимают зависимость фазовой скорости волны от её частоты.

Используем выражения для расчета дисперсионной характеристики:

(1.21)

где - радиус замедляющей системы, см;

h - шаг спирали, см;

- длина волны, см.

Выражение можно записать в виде:

,(1.22)

учитывая что длина волны связана с частотой соотношения

откуда

,(1.23)

(см/с).

Рассчитываем сопротивление связи одиночной спирали:

,(1.24)

где - постоянная фазовая составляющая.

В ЛБВ используется нулевая гармоника, тогда S=0 поэтому:

,(1.25)

1.3 Расчет геометрии и рабочих параметров вывода и ввода энергии

При выполнении данного пункта рассчитаем взаимосвязанное звено между ЛБВ и линией связи. В качестве взаимодействующего звена взят трансформатор полных сопротивлений четырёхступенчатый.

Выберем коаксиал с сопротивлением равным 50 ОМ. Трансформатор используется для согласования системы в полюсе МГц.

Определяем среднюю длину волны рассчитываемого перехода:

,(1.26)

(см).

Этой длине волны соответствует определенная величина волнового сопротивления. Задаем необходимую трансформацию сопротивлений:

185 (Ом) до 50 (Ом).

Далее рассчитываем длину каждого трансформаторного участка:


,(1.27)

(см).

Необходимо определить масштабный множитель, который используется для нахождения местных коэффициентов отражения при значении:

,(1.28)

,

,(1.29)

.

Используя данные находим коэффициенты отражения

Волновое сопротивление отдельных ступеней трансформатора:

.(1.30)

Так как

,(1.31)

где - волновое сопротивление спирали, Ом.

С учетом определения:


,(1.32)

,(1.33)

,(1.34)

(Гц),

,(1.35)

.(1.36)

Откуда получаем, что:

,(1.37)

.(1.38)

Рассчитываем диаметры отдельных трансформаторных участков внутреннего проводника:

,(1.39)

,(1.40)

,(1.41)

где D- внутренний диаметр внешнего проводника, см.

1.4 Расчет величины индуктивности фокусирующего магнитного поля

В рассчитываемой лампы бегущей волны О-типа малой мощности фокусировка электронного пучка осуществляется магнитным полем, источником которого служит магнит. Он обеспечивает однородное продольное поле в лампе.

Индукцию магнитного поля рассчитываем по формуле:

,(42)

где - ток пучка, мА;

- рабочее напряжение, кВ;

- радиус пучка, мм;

- магнитная индукция, Гс.

(Гс).


Заключение

В данной курсовом проекте произведен расчет лампы бегущей волны О-типа малой мощности. Определена геометрия замедляющей системы и её характеристики - дисперсию и сопротивление связи. Рассчитаны геометрия и рабочие параметры вывода и ввода энергии, величина магнитной индукции, необходимая для фокусировки пучка. Выбрана спиральная замедляющая система, которая определяет широкополосность ЛБВ. В таких ЛБВ скорость распространения бегущей волны сохраняется практически постоянной при изменении частоты входного сигнала. Все проделанные расчеты произведены с применением ЭВМ. Составлена программа, позволяющая определить перечисленные параметры, а так же дисперсионную характеристику замедляющей системы в виде зависимости Представлен графический материал проектируемой ЛБВ.


Список литературы

1. Кацман, Ю. А. Приборы сверхвысоких частот./ Ю. А. Кацман. – М.: Высш.шк. 1973-382с.

2. Лошаков, Н. В., Пчельников, П. С. Расчёт и проектирование ЛБВ. – М.: Сов. радио, 1966-124с.

3. Цейтлин, М. Б., Кац, К. М. Лампа с бегущей волны. – М.: Сов.радио, 1964-311с.

4. Силин, Р. А., Сазонов, В. П. Замедляющие системы. –М.: Сов. радио, 1966-632с.

5. Лебедев, И. В. Техника и приборы СВЧ. –М.:Высш. шк .,1972 –

Т. 2. – 375с.


Приложение 1

program ST;

var

y,n,i: integer;

ln0, lnv, u0, g, et, l2, h1, j0, w, p, fma, fmi, ls, fs, a, h, d, r, rp, z, i0, s,

fom, a1, a2, alfa, ze, x2, l1, l0, z0, dli, t, aa2, g1, g2, zz1, zz2, dd1, dd2,

dv, dvh, ll, m, q4, rs, ar, pv, b1, b2, b, zv, ss: real;

infile, myfile: text;

const

c=3e10;

pi=3.14159;

procedure SchetDH;

begin

writeln (myfile, `дисперсионнаяхарактеристика`);

writeln (myfile, ` L,смС/Vф`);

n:= trunk ((lnv-ln0)/0.25)+1;

ll:=ln0;

ss:=h/sqrt(4*pi*pi*a*a*h*h);

for i:=1 to n do

begin

m:=sqrt(1-ss*ss/(a*a*8*pi*pi/ll)/ss);

writeln(myfile, ``, ll:8:5, ``, m:8:5)

ll:=ll+0.25;

end;

writeln;

end;

procedure SchetTPS;

begin

writeln(myfile, `промежуточный параметр а=`, а1:8:3);

writeln(myfile, `по нему определяем константы аlfa, z`);

readln (infile, alfa, ze);

x2:= a2*alfa*ze;

l1:=1.98e-3*ls*sqrt (u0)*(23+g)/(54.6*s*x2);

l0:=l1+l2;

b1:=3.5e-4*sqrt(i0)/sqrt(sqrt(u0));

b2:=1/(rs*sqrt(abs((rs*hi/100-rs)/rs)));

b:=b1*b2;

z0:=z;

dli:=ls/4;

p:=fma/fmi;

t:=-1/cos(pi*p/(1+p));

aa2:=2*(1-1/sqr(t));

g1:=0.5*ln(z0/zv)/(2+aa2);

g2:=aa2*g1;

zz1:=z0*exp(-2*g1);

zz2:=zz1*exp(-2*g2);

dv:=exp((-zv/138)*ln(10));

dd1:=exp((-zz1/138)*ln(10));

dd2:=exp((-zz2/138)*ln(10));

dvh:=exp((-z0/138)*ln(10));

end;

procedure SchetZS;

begin

fma:=c/ln0;

fmi:=c/lnv;

ls:=2*ln0*lnv/(ln0+lnv);

fs:=c/ls;

a:=3.14e-4*ls*et*sqrt(u0);

h:=39.6*a*a/(ls*(0.31+0.95*et)*(0.72+0.06*et));

d:=0.5*h;

r:=ln0/4;

rs:=15*ls/(2*pi*a);

z:=w*c/(5.93e7*sqrt(u0));

i0:=pi*0.25*a*a*j0;

s:=exp(1/3*ln((z*i0)/(4*u0)));

ar:=1.83e10*sqrt(j0)*sqrt(sqrt(u0))/(2*pi*5e9);

fom:=q4*s*s*s/(ar*ar);

a1:=-sqr(q4*s)*q4*s/sqr(1-fom);

a2:=-(1-fom)/(q4*s);

end;

procedure Input;

begin

writeln(`IN : диапазон рабочих длин волн (н/в), см `);

readln(infile, ln0, lnv);

writeln(`IN : напряжение второго анода, В `);

readln (infile, u0);

writeln (`IN: коэффициент усиления , дБ `);

readln (infile, G);

writeln (`IN: выходную мощность `);

readln (infile, pv);

writeln (`IN: угол пролета `);

readln (infile, et);

writeln (`IN: длину поглотителя см `);

readln (infile, l2);

writeln (`IN: коэффициент модуляции эл . пучка , % `);

readln (infile, hi);

writeln (`IN: плотность тока эл . пучка , А / см 2 `);

readln (infile, j0);

writeln (`IN: параметр 4q `);

readln(infile, q4);

writeln(`IN : параметр для определения волн. сопрот. `);

readln(infile, W);

writeln(`IN : входное сопротивление линии, Ом `);

readln (infile, zv);

end;

procedure OutRes;

begin

writeln(myfile, `данные замедляющей системы `);

writeln(myfile, `радиус спирали `, А:8:5, `см `);

writeln(myfile, `шаг спирали ` h:8:5, `см `);

writeln(myfile, `диаметр проволоки ` d:8:5, `см `);

writeln(myfile, `ток электронного пучка `, i0, `A `);

writeln(myfile, `сопротивление сязи ` rs:8:5, `Ом `);

writeln(myfile, `общая длина замедляющей системы `, l0:8:5, `см `);

writeln(myfile, `магнитное поле `,b, `вб/см2 `);

writeln(myfile);

writeln(myfile, `расчет ТПС `);

writeln(myfile, `волновое сопротивление зам. системы `, z:8:5, `Ом `);

writeln(myfile, `сопротивление 1-ой ступени `, zz1:8:5, `Ом `);

writeln(myfile, ` сопротивление 2-ой ступени `, zz2:8:5, `Ом `);

writeln(myfile, `длина участков `, dli:8:5, `см `);

writeln(myfile, `диаметр 1-й ступени `, dv:8:5, `см `);

writeln(myfile, ` диаметр 2-й ступени `, dd2:8:5, `см ``);

writeln(myfile, ` диаметр 3-й ступени `, dd1:8:5, `см ``);

writeln(myfile, ` диаметр 4-й ступени `, dvh:8:5, `см ``);

end;

begin

assign (myfile, `resut. txt `);

assign (myfile, `inp. dat `);

reset(infile);

rewrite(myfile);

Input;

SchetZS;

SchetTPS;

SchetDH;

Outres;

Close(myfile);

Close(infile);

end .

промежуточный параметр а=-0.001

по нему определяем константы alfa, z

ДИСПЕРСИОННАЯ ХАРАКТЕРИСТИКА

L, смС/Vф

4.5000017.60018

4.7500017.58604

5.0000017.57188

5.2500017.55771

5.5000017.54353

5.7500017.52933

6.0000017.51513

6.2500017.50091

6.5000017.48668

6.7500017.47244

7.0000017.45819

7.2500017.44393

7.5000017.42966

7.7500017.41537

8.0000017.40107

8.2500017.38676

8.5000017.37244

8.7500017.25811

9.0000017.34376

данные замедляющей системы:

радиус спирали: 0.07975

шаг спирали: 0.02811

диаметр проволоки: 0.014406

ток электронного пучка: 4.99561909282908Е-0005А

сопротивление связи: 179.60280 Ом

общая длина замедляющей системы:27.73414 см

магнитное поле: 3.20056068335627Е-0009вб/см2

расчет ТПС

волновое сопротивление зам. системы: 184.90302 Ом

сопротивление 1-й ступени: 184.93073 Ом

сопротивление 2-й ступени: 184.97229 Ом

длина участков: 1.5 см

диаметр 1-й ступени: 0.04565 см

диаметр 2-й ступени: 0.04567 см

диаметр 3-й ступени: 0.04570 см

диаметр 4-й ступени: 0.04572 см

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:21:44 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:13:50 29 ноября 2015

Работы, похожие на Контрольная работа: Расчет лампы бегущей волны О-типа малой мощности

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(149898)
Комментарии (1829)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru