Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Система натуральных чисел. Принцип математической индукции. Теоремы математической индукции

Название: Система натуральных чисел. Принцип математической индукции. Теоремы математической индукции
Раздел: Рефераты по математике
Тип: реферат Добавлен 23:40:40 30 августа 2011 Похожие работы
Просмотров: 1625 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

п.1. Аксиоматическая система натуральных чисел.

Определение. Системой натуральных чисел (системой Пеано) называется алгебра , где - бинарные операции, - унарная операция (функция «следования»), - выделенный элемент в множестве , для которой выполнены следующие аксиомы:

Для , (элемент называется следующим за ).

Для , , .

, .

Для , .

, .

Для , .

Аксиома индукции: Пусть . Если множество удовлетворяет условиям:

а) ;

б) для , ;

то .

Система аксиом Пеано обладает тем свойством, что ни одна из аксиом системы не является следствием других аксиом.

Из системы аксиом Пеано можно вывести все известные нам свойства натуральных чисел.

п.2. Теоремы математической индукции.

Теорема 1. (принцип полной математической индукции). Пусть - одноместный предикат на , который удовлетворяет условиям:

- истина.

(- истина ®- истина).

Тогда предикат тождественно истинен на .

Доказательство. Обозначим через множество всех тех , для которых истина. Проверим, что удовлетворяет условиям аксиомы индукции.

Т.к. - истина, то .

Если , то - истина и по второму условию теоремы индукции - истина. Поэтому .

Множество удовлетворяет условиям аксиомы индукции. Поэтому .

Обозначение. Множество целых чисел состоит из натуральных чисел, нуля и чисел противоположных натуральным.

Для обозначим .

Теорема 2. (обобщение принципа полной математической индукции). Пусть - одноместный предикат на , где , который удовлетворяет условиям:

- истина.

(- истина ®- истина).

Тогда предикат тождественно истинен на .

Теорема 3. (сильная форма принципа полной математической индукции). Пусть - одноместный предикат на , который удовлетворяет условиям:

- истина.

(- истины®- истина).

Тогда предикат тождественно истинен на .

Теорема 4. (обобщение сильной формы принципа полной математической индукции). Пусть - одноместный предикат на , где , который удовлетворяет условиям:

- истина.

(- истины ®- истина).

Тогда предикат тождественно истинен на .

Числа Фибоначчи

Определение. Числа Фибоначчи , для , определяются рекуррентно

(1) , ;

для всех .

Из определения чисел Фибоначчи следует, что

, , , , , , , , , , .

Для вычисления чисел Фибоначчи справедлива следующая формула Бине

(3) , .

Из (1) и (2) следует, что индукционное предположение, при доказательстве формулы Бине, должно предполагать справедливость (3) для и , и значит, начальные условия должны требовать выполнение (3) для и . Поэтому доказательство формулы Бине может проводиться по следующей теореме математической индукции.

Теорема 5. Пусть - одноместный предикат на , который удовлетворяет условиям:

- истины.

(- истины ®- истина).

Тогда предикат тождественно истинен на .

Проведём доказательство формулы Бине по теореме 5.

Для и равенство (3) принимает вид

, .

Очевидно, что эти равенства верны.

Предположим, что равенство (3) истинно для чисел и . Тогда из (2) следует, что

.

После простых преобразований правой части получим, что

По индукции формула Бине доказана.

Теорема 6. Пусть - одноместный предикат на , который удовлетворяет условиям:

- истина.

(- истины ®- истина).

Тогда предикат тождественно истинен на .

п.3. Основное свойство ассоциативных операций.

Теорема. Если бинарная операция на множестве ассоциативна, то при любой расстановке скобок, задающих порядок выполнения операций в произведении значения произведений будут одинаковыми, то есть значение произведения не зависит от способа расстановки скобок.

Доказательство. Проводится индукцией по . Проверим утверждения теоремы для и .

Для - очевидно, так как порядок выполнения операций единственен.

Для произведение может быть вычислено двумя способами: или . В силу ассоциативности - эти произведения равны.

Предположим, что теорема доказана для всех чисел , где .

Докажем теорему для числа . При любой расстановке скобок в произведении , такое произведение есть произведение двух скобок (1), где . Внутри каждой скобки расставлены свои скобки. Так как в каждой скобке множителей, то по индукционному предположению значение произведения в скобках не зависит от того, как в них расставлены скобки. Поэтому произведение (1) можно записать в виде , применяя закон ассоциативности и индукцирования к множителям. Получим, что произведение (1) равно и так далее продолжая, получим , поэтому произведение (1) не зависит от способа расстановки скобок.

Список литературы

Е.Е. Маренич, А.С. Маренич. Вводный курс математики. Учебно-методическое пособие. 2002

В.Е. Маренич. Журнал «Аргумент». Задачи по теории групп.

Кострикин А.И. Введение в алгебру. Ч.1 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.2 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.3 Основные структуры алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Сборник задач по алгебре. Изд. третье – М.: Физмат лит-ра, 2001

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:05:29 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:03:51 29 ноября 2015

Работы, похожие на Реферат: Система натуральных чисел. Принцип математической индукции. Теоремы математической индукции
... конечных групп с известными добавлениями к максимальным подгруппам
... образования "Гомельский государственный университет имени Франциска Скорины" Математический факультет Кафедра алгебры и геометрии Допущена к ...
Доказывая теорему индукцией по порядку , можно предположить, что обладает только одной минимальной нормальной подгруппой.
Таким образом, множество элементов группы , которое тождественно трансформирует , является нормальной подгруппой группы , такой, что .
Раздел: Рефераты по математике
Тип: дипломная работа Просмотров: 110 Комментариев: 1 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Элементы теории множеств
Курсовая работа Выполнил студент 3 курса 4 группы физико-математического факультета Данилюк Ярослав Борисович Мозырский государственный педагогический ...
Пусть A - подмножество U. Абсолютным дополнением множества A до множества U называется множество, содержащее все элементы множества U, которые не принадлежат множеству A. A'==UA ...
Современная теория множеств строится на системе аксиом - утверждений, принимаемых без доказательства, из которых выводятся все теоремы и утверждения теории множеств.
Раздел: Рефераты по математике
Тип: курсовая работа Просмотров: 3965 Комментариев: 2 Похожие работы
Оценило: 3 человек Средний балл: 3.7 Оценка: неизвестно     Скачать
Изучение элементов современной алгебры, на примере подгрупп ...
... КАТАНОВА ИНСТИТУТ ЕСТЕСТВЕННЫХ НАУК И МАТЕМАТИКИ КАФЕДРА МАТЕМАТИКИ И МПМ СПЕЦИАЛЬНОСТЬ 010100 - МАТЕМАТИКА Изучение элементов современной алгебры, на ...
Оказывается, что множество Т не является подгруппой группы S4, так как для него не выполняется ни одно из условий 1), 2) теоремы о подгруппах.
Пусть Н и G - группы перестановок, причём Н является подгруппой G. В теории групп существует теорема, доказанная Лагранжем, устанавливающая связь между порядками групп Н и G. Эта ...
Раздел: Рефераты по математике
Тип: реферат Просмотров: 2762 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 4 Оценка: неизвестно     Скачать
Ответы на вопросы госэкзамена по философии философского факультета ...
Учение Сократа и его место в античной философии. 4 Учение Платона об идеях. 5 Аристотель о материи и форме. 5 Эпикурейская философия. 6 Античный ...
Роль превых истин, с которыми новые истины должны согласовываться принадлежит аксиомам.
Индукция - не средство узкоэмпирического исследования (как у Милля), а метод выработки фундаментальных теоретических понятий или аксиом естествознания, естественной философии.
Раздел: Рефераты по философии
Тип: реферат Просмотров: 5491 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 5 Оценка: неизвестно     Скачать
Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ ...
Кольцом называется числ. множ. На котором выполняются три опер-ии: слож, умнож, вычит. Полем наз. Числ множ. На котором выполняются 4 операции: слож ...
Пусть А - подгруппа группы G. |G|=n, |A|=k, Док-м, что n|k. Рассм-м левостороннее разложение группы G по подгруппе А. Пусть оно состоит из j классов.
Независимость: невозможно доказать аксиому как теорему с помощью др. аксиом
Раздел: Рефераты по математике
Тип: реферат Просмотров: 3490 Комментариев: 3 Похожие работы
Оценило: 3 человек Средний балл: 3 Оценка: неизвестно     Скачать

Все работы, похожие на Реферат: Система натуральных чисел. Принцип математической индукции. Теоремы математической индукции (1446)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150375)
Комментарии (1830)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru