Банк рефератов содержит более 364 тысяч рефератов, курсовых и дипломных работ, шпаргалок и докладов по различным дисциплинам: истории, психологии, экономике, менеджменту, философии, праву, экологии. А также изложения, сочинения по литературе, отчеты по практике, топики по английскому.
Полнотекстовый поиск
Всего работ:
364150
Теги названий
Разделы
Авиация и космонавтика (304)
Административное право (123)
Арбитражный процесс (23)
Архитектура (113)
Астрология (4)
Астрономия (4814)
Банковское дело (5227)
Безопасность жизнедеятельности (2616)
Биографии (3423)
Биология (4214)
Биология и химия (1518)
Биржевое дело (68)
Ботаника и сельское хоз-во (2836)
Бухгалтерский учет и аудит (8269)
Валютные отношения (50)
Ветеринария (50)
Военная кафедра (762)
ГДЗ (2)
География (5275)
Геодезия (30)
Геология (1222)
Геополитика (43)
Государство и право (20403)
Гражданское право и процесс (465)
Делопроизводство (19)
Деньги и кредит (108)
ЕГЭ (173)
Естествознание (96)
Журналистика (899)
ЗНО (54)
Зоология (34)
Издательское дело и полиграфия (476)
Инвестиции (106)
Иностранный язык (62792)
Информатика (3562)
Информатика, программирование (6444)
Исторические личности (2165)
История (21320)
История техники (766)
Кибернетика (64)
Коммуникации и связь (3145)
Компьютерные науки (60)
Косметология (17)
Краеведение и этнография (588)
Краткое содержание произведений (1000)
Криминалистика (106)
Криминология (48)
Криптология (3)
Кулинария (1167)
Культура и искусство (8485)
Культурология (537)
Литература : зарубежная (2044)
Литература и русский язык (11657)
Логика (532)
Логистика (21)
Маркетинг (7985)
Математика (3721)
Медицина, здоровье (10549)
Медицинские науки (88)
Международное публичное право (58)
Международное частное право (36)
Международные отношения (2257)
Менеджмент (12491)
Металлургия (91)
Москвоведение (797)
Музыка (1338)
Муниципальное право (24)
Налоги, налогообложение (214)
Наука и техника (1141)
Начертательная геометрия (3)
Оккультизм и уфология (8)
Остальные рефераты (21697)
Педагогика (7850)
Политология (3801)
Право (682)
Право, юриспруденция (2881)
Предпринимательство (475)
Прикладные науки (1)
Промышленность, производство (7100)
Психология (8694)
психология, педагогика (4121)
Радиоэлектроника (443)
Реклама (952)
Религия и мифология (2967)
Риторика (23)
Сексология (748)
Социология (4876)
Статистика (95)
Страхование (107)
Строительные науки (7)
Строительство (2004)
Схемотехника (15)
Таможенная система (663)
Теория государства и права (240)
Теория организации (39)
Теплотехника (25)
Технология (624)
Товароведение (16)
Транспорт (2652)
Трудовое право (136)
Туризм (90)
Уголовное право и процесс (406)
Управление (95)
Управленческие науки (24)
Физика (3463)
Физкультура и спорт (4482)
Философия (7216)
Финансовые науки (4592)
Финансы (5386)
Фотография (3)
Химия (2244)
Хозяйственное право (23)
Цифровые устройства (29)
Экологическое право (35)
Экология (4517)
Экономика (20645)
Экономико-математическое моделирование (666)
Экономическая география (119)
Экономическая теория (2573)
Этика (889)
Юриспруденция (288)
Языковедение (148)
Языкознание, филология (1140)

Реферат: Теория вероятности

Название: Теория вероятности
Раздел: Рефераты по математике
Тип: реферат Добавлен 11:59:21 28 августа 2011 Похожие работы
Просмотров: 11296 Комментариев: 2 Оценило: 5 человек Средний балл: 4.4 Оценка: неизвестно     Скачать

Выполнил: Дубчинов Чингис ученик 9 «А» класса

г.Улан-Удэ 2008 г.

Введение

Теория вероятностей возникла в середине XVII в. в связи с задачами расчета шансов выигрыша игроков в азартных играх. Страстный игрок в кости француз де Мере, стараясь разбогатеть, придумывал новые правила игры. Он предлагал бросать кость четыре раза подряд и держал пари, что при этом хотя бы один раз выпадет шестерка (6 очков). Для большей уверенности в выигрыше де Мере обратился к своему знакомому, французскому математику Паскалю, с просьбой рассчитать вероятность выигрыша в этой игре. Приведем рассуждения Паскаля. Игральная кость представляет собой правильный кубик, на шести гранях которого нанесены цифры 1, 2, 3, 4, 5 и 6 (число очков). При бросании кости "наудачу" выпадение какого-либо числа очков является случайным событием; оно зависит от многих неучитываемых воздействий: начальные положения и начальные скорости различных участков кости, движение воздуха на ее пути, те или иные шероховатости в месте падения, возникающие при ударе о поверхность упругие силы и т. д. Так как эти воздействия имеют хаотичный характер, то в силу соображений симметрии нет оснований отдавать предпочтение выпадению одного числа очков перед другим (если, конечно, нет неправильностей в самой кости или какой-то исключительной ловкости бросающего).

Поэтому при бросании кости имеется шесть исключающих друг друга равновозможных случаев, и вероятность выпадения данного числа очков следует принять равной 1/6 (или100/6 %). При двукратном бросании кости результат первого бросания - выпадение определенного числа очков - не окажет никакого влияния на результат второго бросания, следовательно, всех равновозможных случаев будет 6 · 6 = 36. Из этих 36 равновозможных случаев в 11 случаях шестерка появится хотя бы один раз и в 5 · 5 = 25 случаях шестерка не выпадет ни разу.

Шансы на появление шестерки хотя бы один раз будут равны 11 из 36, другими словами, вероятность события А, состоящего в том, что при двукратном бросании кости появится хотя бы один раз шестерка, равна11/100 , т. е. равна отношению числа случаев благоприятствующих событию А к числу всех равновозможных случаев. Вероятность того, что шестерка не появится ни разу, т. е. вероятность события , называемого противоположным событию A, равна25/36 . При трехкратном бросании кости число всех равновозможных случаев будет 36 · 6 = 63, при четырехкратном 63 · 6 = 64. При трехкратном бросании кости число случаев, в которых шестерка не появится ни разу, равно 25 · 5 = 53, при четырехкратном 53 · 5 = 54. Поэтому вероятность события, состоящего в том, что при четырехкратном бросании ни разу не выпадет шестерка, равна, а вероятность противоположного события, т. е. вероятность появления шестерки хотя бы один раз, или вероятность выигрыша де Мере, равна .

Таким образом, у де Мере было больше шансов выиграть, чем проиграть.

Рассуждения Паскаля и все его вычисления основаны на классическом определении понятия вероятности как отношения числа благоприятствующих случаев к числу всех равновозможных случаев.

Важно отметить, что произведенные выше расчеты и само понятие вероятности как числовой характеристики случайного события относились к явлениям массового характера. Утверждение, что вероятность выпадения шестерки при бросании игральной кости равна 1/6, имеет следующий объективный смысл: при большом количестве бросаний доля числа выпадений шестерки будет в среднем равна 1\6; так, при 600 бросаниях шестерка может появиться 93, или 98, или 105 и т. д. раз, однако при большом числе серий по 600 бросаний среднее число появлений шестерки в серии из 600 бросаний будет весьма близко к 100.

Отношение числа появлений события к числу испытаний называется частостью события. Для однородных массовых явлений частости событий ведут себя устойчиво, т. е. мало колеблются около средних величин, которые и принимаются за вероятности этих событий (статистическое определение понятия вероятности).

В XVII-XVIII вв. теория вероятностей развивалась незначительно, так как область ее применения, ввиду низкого уровня естествознания ограничивалась небольшим кругом вопросов (страхование, азартные игры, демография). В XIX в. и до настоящего времени, в связи с запросами практики, теория вероятностей непрерывно и быстро развивается, находя применения все в более разнообразных областях науки, техники, экономики (теория ошибок наблюдений, теория стрельбы, статистика, молекулярная и атомная физика, химия, метеорология, вопросы планирования, статистический контроль в производстве и т. д.)

Теория вероятностей является разделом математики, изучающим закономерности случайных массовых событий устойчивой частости.

Основное положение теории

Теория вероятности – это наука, занимающаяся изучением закономерностей массовых случайных явлений. Такие же закономерности, только в более узкой предметной области социальноэкономических явлений, изучает статистика. Между этими науками имеется общность методологии и высокая степень взаимосвязи. Практически любые выводы сделанные статистикой рассматриваются как вероятностные.

Особенно наглядно вероятностный характер статистических исследований проявляется в выборочном методе, поскольку любой вывод сделанный по результатам выборки оценивается с заданной вероятностью.

С развитием рынка постепенно сращивается вероятность и статистика, особенно наглядно это проявляется в управлении рисками, товарными запасами, портфелем ценных бумаг и т.п. За рубежом теория вероятности и математическая статистика применятся очень широко. В нашей стране пока широко применяется в управлении качеством продукции, поэтому распространение и внедрение в практику методов теории вероятности актуальная задача.

Как уже говорилось, понятие вероятности события определяется для массовых явлений или, точнее, для однородных массовых операций. Однородная массовая операция состоит из многократного повторения подобных между собой единичных операций, или, как говорят, испытаний. Каждое отдельное испытание заключается в том, что создается определенный комплекс условий, существенных для данной массовой операции. В принципе должно быть возможным воспроизводить эту совокупность условий неограниченное число раз.

Пример1. При бросании игральной кости "наудачу" существенным условием является только то, что кость бросается на стол, а все остальные обстоятельства (начальная скорость, давление и температура воздуха, окраска стола и т. д.) в расчет не принимаются.

Пример 2. Стрелок многократно стреляет в определенную мишень с данного расстояния из положения "стоя"; каждый отдельный выстрел является испытанием в массовой операции стрельбы в данных условиях. Если же стрелку разрешено при разных выстрелах менять положение ("стоя", "лежа", "с колена"), то предыдущие условия существенно изменяются и следует говорить о массовой операции стрельбы с данного расстояния.

Возможные результаты единичной операции, или испытания S, называются случайными событиями. Случайное событие - это такое событие, которое может произойти, а может и не произойти при испытании S. Вместо "произойти" говорят также "наступить", "появиться", "иметь место".

Так, при бросании игральной кости случайными событиями являются: выпадение данного числа очков, выпадение нечетного числа очков, выпадение числа очков, не большего трех, и т. п.

При стрельбе случайным событием является попадание в цель (стрелок может как попасть в цель, так и промахнуться), противоположным ему случайным событием является промах. Из этого примера хорошо видно, что понятие случайного события в теории вероятностей не следует понимать в житейском смысле: "это чистая случайность", так как для хорошего стрелка попадание в цель будет скорее правилом, а не случайностью, понимаемой в обыденном смысле.

Пусть при некотором числе n испытаний событие A наступило m раз, т. е. m результатов единичной операции оказались "удачными", в том смысле, что интересующее нас событие A осуществилось, и n-m результатов оказались "неудачными" - событие A не произошло.

Вероятностью события A, или вероятностью «удачного» исхода единичной операции, называется среднее значение частости, т. е. среднее значение отношения числа «удачных» исходов к числу всех проведенных единичных операций (испытаний).

Само собой разумеется, что если вероятность события равна , то при n испытаниях событие A может наступить и более чем m раз, и менее чем m раз; оно лишь в среднем наступает m раз, и в большинстве серий по n испытаний число появлений события A будет близко к m, в особенности если n — большое число.

Таким образом, вероятность P(A) есть некоторое постоянное число, заключенное между нулем и единицей:

0 Ј P(A) Ј 1

Иногда ее выражают в процентах: Р(А)

100% есть средний процент числа появлений события A. Конечно, следует помнить, что речь идет о некоторой массовой операции, т. е. условия S производства испытаний — определенные; если их существенно изменить, то может измениться вероятность события A: то будет вероятность события A в другой массовой операции, с другими условиями испытаний. В дальнейшем будем считать, не оговаривая это каждый раз, что речь идет об определенной массовой операции; если же условия, при которых осуществляются испытания, меняются, то это будет специально отмечаться.

Два события A и B называются равносильными, если при каждом испытании они либо оба наступают, либо оба не наступают.

В этом случае пишут

A = B

и не делают различия между этими событиями. Вероятности равно- сильных событии A = B, очевидно, одинаковы:

P(A) = P(B)

Обратное утверждение, конечно, неверно: из того, что P(A) = P(B), отнюдь не следует, что A = B.

Событие, которое обязательно наступает при каждом испытании, называется достоверным.

Условимся обозначать его буквой D.

Для достоверного события число его наступлений m равно числу испытаний n, поэтому частость его всегда равна единице, т. е. вероятность достоверного события следует принять равной единице:

P(D) = 1

Событие, которое заведомо не может произойти, называется невозможным.

Условимся обозначать его буквой H.

Для невозможного события m = 0, следовательно, частость его всегда равна нулю, т. е. вероятность невозможного события следует считать равной нулю:

P(H) = 0

Чем больше вероятность события, тем чаще оно наступает, и наоборот, чем меньше вероятность события, тем реже оно наступает. Когда вероятность события близка к единице или равна единице, то оно наступает почти при всех испытаниях. О таком событии говорят, что оно практически достоверно, т. е. что можно наверняка рассчитывать на его наступление.

Наоборот, когда вероятность равна нулю или очень мала, то событие наступает крайне редко; о таком событии говорят, что оно практически невозможно.

На сколько мала должна быть вероятность события, чтобы практически можно было считать его невозможным? Общего ответа здесь дать нельзя, так как все зависит от того, насколько важно это событие.

Например.Если, например, вероятность того, что электрическая лампочка окажется испорченной, равна 0, 01, то с этим можно примириться. Но если 0, 01 есть вероятность того, что в банке консервов образуется сильный яд ботулин, то с этим примириться нельзя, так как примерно и одном случае из ста будет происходить отравление людей и человеческие жизни окажутся под угрозой.

Основные категории теории вероятности.

Как и всякая наука, теория вероятности и математическая статистика оперируют рядом основных категорий:

События;

Вероятность;

Случайность;

Распределение вероятностей и т.д.

События – называется произвольное множество некоторого множества всех возможных исходов, могут быть:

Достоверные;

Невозможные;

Случайные.

Достоверным называется событие, которое заведомо произойдет при соблюдении определенных условий.

Невозможным называется событие, которое заведомо не произойдет при соблюдении определенных условий.

Случайным называют события, которые могут произойти либо не произойти при соблюдении определенных условий.

События называют единственновозможными, если наступление одного из них это событие достоверное.

События называют равновозможными, если ни одно из них не является более возможным, чем другие.

События называют несовместимыми, если появление одного из них исключает возможность появления другого в том же испытании.

Классическое и статистическое определение вероятности.

Вероятность – численная характеристика реальности появления того или иного события.

Классическое определение вероятности: если множество возможных исходов конечное число, то вероятностью события Е считается отношение числа исходов благоприятствующих этому событию к общему числу единственновозможных равновозможных исходов.

Множество возможных исходов в теории вероятности называется пространством элементарных событий.

Пространство элементарных событий всегда можно описать числом nS=2, nS=6.

Если обозначить число исходов благоприятствующих событию n(E), то вероятность события Е будет выглядеть . Для наших примеров .

Исходя из классического определения вероятности, можно вывести ее основные свойства:

Вероятность достоверного события равна 1.

Вероятность невозможного события равна 0.

Вероятность случайного события находится в пределах от 0 до 1.

Классическое определение вероятности связано с непосредственным подсчетом вероятности, требует точного знания числа всех возможных исходов, и удобно для расчета вероятности достаточно простых событий.

Расчет вероятности более сложных событий - это сложная задача, требующая определения чисел всех возможных комбинаций появления этих событий. Подобными расчетами занимается специальная наука – комбинаторика. Поэтому на практике часто используется статистическое определение вероятности.

Доказано, что при многократном повторении опыта частости довольно устойчивы и колеблятся около некоторого постоянного числа, представляющего собой вероятность события.

Таким образом, в условиях массовых испытаний распределение частостей превращается в распределение вероятности случайной перемены.

Достоинство статистического определения вероятности в том, что для ее расчета не обязательно знать конечное число исходов.

Если классическое определение вероятности осуществляется априори (до опыта), то статистическое апосториори (после опыта по результатам).

Распределение частостей дискретного ряда, выраженных конечными числами, называется дискретным распределением вероятности.

Если осуществляются исследования массовых событий частостей, которые распределяются непрерывно и могут быть выражены какой-либо функцией, называются непрерывным распределением вероятности.

На графике такое распределение отражается непрерывной плавной линией, а площадь ограниченная этой линией и осью абсцисс всегда равна 1.

Заключение

Таким образом, рассмотрев теорию вероятности, ее историю и положения и возможности, можно утверждать, что возникновение данной теории не было случайным явлением вы науке, а было вызвано необходимостью дальнейшего развития технологии и кибернетики, поскольку существующее программное управление не может помочь человеку в создании таких кибернетических машин, которые, подобно человеку, будут мыслить самостоятельно.

И именно теория вероятности может способствовать появлению искусственного разума.

«Процессы управления , где бы они ни протекали – живых организмах, машинах или обществе, - происходят по одним и тем же законам», - провозгласила кибернетика. А значит, и те, пусть еще не познанные до конца, процессы, что протекают в голове человека и позволяют ему гибко приспосабливаться к изменяющейся обстановке, можно воспроизвести искусственно в сложных автоматических устройствах.

Где же пределы, которых могут достичь кибернетические машины?

Список литературы

1.Г.И. Мишкевич «Доктор занимательных наук»

2.Е.П. Бударина «Теория вероятности и математическая статистика»

3.И.В. Волков « Высшая математика»

4. Гнеденко Б. В. и Хинчин А. Я., «Элементарное введение в теорию вероятностей»

Оценить/Добавить комментарий
Имя
Оценка
Комментарии:
Где скачать еще рефератов? Здесь: letsdoit777.blogspot.com
Евгений08:05:04 19 марта 2016
Кто еще хочет зарабатывать от 9000 рублей в день "Чистых Денег"? Узнайте как: business1777.blogspot.com ! Cпециально для студентов!
11:03:36 29 ноября 2015

Работы, похожие на Реферат: Теория вероятности
Разработка программы факультативного курса по теории вероятностей в ...
... ПЦК преподавателей естественно-математических дисциплин Разработка программы факультативного курса по теории вероятностей в курсе математики 8 класса
Событие А6 - выпадение шести очков при бросании игральной кости - случайное.
Рассмотрев ряд примеров случайных величин (число выпавших очков при бросании игровых костей, число голосов, набранных кандидатами, результат измерения формулируется определение ...
Раздел: Рефераты по педагогике
Тип: курсовая работа Просмотров: 9578 Комментариев: 2 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Методика обучения элементам теории вероятностей на факультативных ...
Введение Глава I. Вероятностно - статистическая линия в базовом школьном курсе математики 1.1 Статистическое мышление и школьное математическое ...
... выпадение "орла" на монете, или четырех очков на кубике) устойчиво сосредотачиваются возле некоторого числа p, которое и называется вероятностью наблюдаемого исхода или события.
3. Вероятность случайного события равна сумме вероятностей исходов испытания, благоприятствующих этому событию, т.е. если е1,...,ек - множество всех исходов испытания ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 9688 Комментариев: 2 Похожие работы
Оценило: 2 человек Средний балл: 4.5 Оценка: неизвестно     Скачать
... quot;Основы теории вероятностей и математической статистики" в ...
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования "Вятский государственный ...
Событию "сумма очков равна 5" благоприятствуют события (1; 4), (2; 3), (3; 2), (4; 1), а событию "сумма очков равна 10" - события (4; 6), (5; 5), (6; 4). Таким образом, число ...
1. Найти вероятность того, что при бросании трех игральных костей шестерка выпадает на одной (безразлично какой) кости, если на гранях двух других костей выпадут числа очков, не ...
Раздел: Рефераты по педагогике
Тип: дипломная работа Просмотров: 3369 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Серьёзные лекции по высшей экономической математике
Комбинаторные задачи. 1.Сколькими способами колода в 52 карты может быть роздана 13-ти игрокам так, чтобы каждый игрок получил по одной карте каждой ...
б) Обозначим через А событие, состоящее в выпадении трёх шестёрок, а через В - в выпадении шестёрки хотя бы на одной кости.
Единственное, что можно сделать, это подбросить эту кость n раз (где n-достаточно большое число, скажем n=1000 или n=5000), подсчитать число выпадений трех очков n3 и считать ...
Раздел: Рефераты по математике
Тип: реферат Просмотров: 8131 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Теория вероятностей. От Паскаля до Колмогорова
Теория вероятностей. От Паскаля до Колмогорова Санкт-Петербург 2010 Введение Сейчас уже трудно установить, кто впервые поставил вопрос, пусть и в ...
Кардано предложил рассматривать отношение 1/6 (вероятность выбрасывания заданного числа очков при бросании одной кости), 11/36 (вероятность получить хотя бы на одной из двух костей ...
Если бы исследователи того времени задали себе вопрос, что возможнее при четырехкратном бросании кости хотя бы раз выбросить шестерку или при двадцатипятикратном бросании двух ...
Раздел: Рефераты по математике
Тип: курсовая работа Просмотров: 968 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Возможности использования элементов теории вероятностей и статистики ...
... государственный педагогический университет имени Максима Танка Минск 2002 Введение Развитие теории вероятностей с момента зарождения этой науки и ...
Поэтому при бросании такой кости выпадение каждой из них можно ожидать с вероятностью, равной 1/6. В классической теории вероятностей мы имеем дело со случаями, когда вычисленная ...
Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равновозможных исходов опыта, в котором может появиться это ...
Раздел: психология, педагогика
Тип: дипломная работа Просмотров: 6012 Комментариев: 3 Похожие работы
Оценило: 1 человек Средний балл: 5 Оценка: неизвестно     Скачать
Теория вероятностей: наука о случайном
... Валишева Тимура 1. Вступление. С первого взгляда может показаться, что никаких законов, управляющих случайными явлениями нет и быть не может. Однако, ...
При каждом отдельном бросании вероятность события A = "выпала шестерка"
Разные люди по-разному относятся к риску, но очевидно, что даже самые осторожные легко пойдут на риск, если вероятность неблагоприятного исхода составляет 10-5. Например ...
Раздел: Рефераты по математике
Тип: реферат Просмотров: 5878 Комментариев: 3 Похожие работы
Оценило: 11 человек Средний балл: 4.3 Оценка: 4     Скачать
Курс лекций по теории вероятностей
Раздел 1. Классическая вероятностная схема 1.1 Основные формулы комбинаторики В данном разделе мы займемся подсчетом числа "шансов". О числе шансов ...
б) здесь каждое испытание имеет три, а не два исхода: выпадение шестерки, выпадение единицы, выпадение остальных граней.
Теперь мы можем вернуться к примеру 20(б) и выписать ответ: так как вероятности выпадения шестерки и единицы равны 1/6, а вероятность третьего исхода (выпали любые другие грани ...
Раздел: Рефераты по математике
Тип: реферат Просмотров: 2209 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать
Теория вероятностей и математическая статистика
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования "Южный ...
1) овладеть основами теории вероятностей, усвоив понятия множества элементарных исходов, алгебры случайных событий, вероятностной функции как числовой функции множеств, случайной ...
Элементарными исходами, образующими множество W, могут быть объекты любой природы: наборы шаров различных цветов, наборы деталей различного качества, наборы карт различных ...
Раздел: Рефераты по математике
Тип: учебное пособие Просмотров: 21966 Комментариев: 2 Похожие работы
Оценило: 0 человек Средний балл: 0 Оценка: неизвестно     Скачать

Все работы, похожие на Реферат: Теория вероятности (3585)

Назад
Меню
Главная
Рефераты
Благодарности
Опрос
Станете ли вы заказывать работу за деньги, если не найдете ее в Интернете?

Да, в любом случае.
Да, но только в случае крайней необходимости.
Возможно, в зависимости от цены.
Нет, напишу его сам.
Нет, забью.



Результаты(150917)
Комментарии (1842)
Copyright © 2005-2016 BestReferat.ru bestreferat@mail.ru       реклама на сайте

Рейтинг@Mail.ru